Том 3. Простые числа. Долгая дорога к бесконечности | страница 76



9901 — простое;

999001 — составное;

99990001-простое;

9999900001 — составное;

999999000001 — простое;

99999990000001 — составное;

9999999900000001 — простое;

999999999000000001 — составное.

К сожалению, следующее число 999999999990000000001 также является составным!

* * *

Продолжение следует…

Мы видели, как математики, такие как Мерсенн, Ферма, а иногда даже сам Эйлер, искали практические инструменты для работы с числами. Это в некоторой степени подрывало становление строгой теории. Доказательства едва упоминались, но результаты продолжали использоваться. Гаусс начал новую эру в истории математики, настояв на том, что приведение строгих доказательств должно быть главной целью.

Тем не менее с простыми числами мы снова, казалось бы, опираемся на эмпирический подход. Мы используем недоказанные теоремы и полагаемся на результаты, если знаем, что вероятность ошибки очень мала. Мы действуем как Ферма, но даже не пытаемся прятать гипотетические доказательства. Мы можем так делать, потому что, во-первых, имеем огромные возможности благодаря компьютерным алгоритмам, а во-вторых — огромную потребность в больших простых числах.

В чисто теоретическом смысле можно сказать, что простые числа продолжают сопротивляться усилиям математиков. История их исследований в значительной степени является историей неудач. Наибольший успех был с дзета-функцией Римана, но мы все-таки понимаем, что это лишь частичный успех. Эйлер, который был великим математическим провидцем, не испытывал особенно оптимистичных чувств по поводу наших шансов понять эти неуловимые числа: «Математики уже давно тщетно пытаются найти закономерности в последовательности простых чисел, но у меня есть основания полагать, что это тайна, в которую человеческий разум никогда не сможет проникнуть».

Приложение

Доказательства

1. Доказательство основной теоремы арифметики

Теорема утверждает, что любое натуральное число, отличное от 1, может быть единственным способом выражено в виде произведения простых чисел. Сначала мы должны объяснить, почему единица не считается простым числом.

Существует несколько причин, но наиболее очевидным является тот факт, что для числа 1 теорема не имеет места, так как оно может быть разложено на множители несколькими способами:

1 = 1 х 1 = 1 х 1 х 1 = 1 х 1 х 1 х 1 = …

С этой оговоркой мы можем доказать теорему в два этапа. Сначала покажем, что число может быть представлено в виде произведения, а затем — что это можно сделать единственным способом.