Том 3. Простые числа. Долгая дорога к бесконечности | страница 72
Существуют также многочлены для «генерации» простых чисел, подобные тем, что использовал Эйлер, чтобы получить список 40 простых чисел с помощью функции f(х) = х>2 + х + 41, которая генерирует простые числа для каждого значения х.
Например,
х = 0; f(0) = 0 + 0 +41 = 41;
х = 1; f(1) = 1 + 1 + 41 = 43;
х = 2; f(2) = 4 + 2 + 41 = 47.
Однако формула не работает начиная со значений 41 и 42, при подставлении которых получаются составные числа:
х = 41; f(41) = 1681 + 41 + 41 = 1763;
х = 42; f(42) = 1764 + 42 + 42 = 1848.
Эйлер продолжил изучение этого многочлена и пришел к выводу, что многочлен более общего вида, х>2 — х + q, будет генерировать простые числа для значений х между 0 и q — 2. Существуют также многочлены, открытые Джонсом, Сато, Вада и Вьенсом в 1976 г., которые генерируют только простые числа при подставлении значений их переменных. Эти довольно сложные многочлены содержат 28 переменных. Они не представляют большой практической пользы: если получается положительное значение, оно является простым числом, но в большинстве случаев (почти всегда) результат является отрицательным числом.
В настоящее время большинство известных простых чисел (мы всегда имеем в виду большие простые числа) являются так называемыми простыми числами Мерсенна. Причина этого — в наличии теста простоты Люка-Лемера, который эффективно работает для чисел такого типа. Напомним, что число Мерсенна имеет вид 2>n — 1. Когда такое число является простым, оно называется «простым числом Мерсенна». На момент 14 апреля 2011 г. известно только 47 простых чисел Мерсенна. Самым большим из них является число 2>43112609—1, которое имеет почти 13 млн цифр.
* * *
ПРОЕКТ GIMPS
Широкомасштабный интернет-проект по поиску простых чисел Мерсенна (GIMPS — Great Internet Mersenne Prime Search) начался по инициативе Джорджа Вольтмана и использует сеть соединенных через интернет персональных компьютеров добровольцев (любой желающий может зарегистрироваться). Эти компьютеры работают параллельно и в совокупности представляют собой вычислительные мощности, превосходящие возможности любого суперкомпьютера. Каждый доброволец устанавливает соответствующее программное обеспечение, и его компьютер выполняет вычисления в периоды простоя. Проект был запущен в 1997 г., а к августу 2009 г. было найдено в общей сложности 12 новых простых чисел Мерсенна. Фонд Электронных Рубежей (