Том 3. Простые числа. Долгая дорога к бесконечности | страница 52





С другой стороны, тени могут быть очень обманчивы, или их не так уж легко можно интерпретировать. Например, рассмотрим объект, который при освещении справа отбрасывает тень в форме круга. При освещении снизу его тень будет треугольная, а при освещении сверху — прямоугольная. Существует ли такой трехмерный объект? Если да, то он может иметь очень странную форму!



Возникает вопрос: существует ли связь между различными проекциями объекта, которая позволяет определить его трехмерную форму? Ответ был дан в 1986 г. Кеном Фалконером, преподавателем математики Сент-Эндрюсского университета. Его теорема гласит: нет, в общем случае никакой связи нет.

Что же нам делать, если мы хотим знать, какую форму имеет объект в четырехмерном пространстве? Мы никогда не сможем увидеть его точную форму, потому что даже если бы мы могли изобразить его, у нас нет возможности его воспринимать. Однако существуют аналитические методы определения некоторых геометрических характеристик объекта.

Возвращаясь к примеру, в котором мы были двумерными существами, покажем методы, с помощью которых такие существа могут определить, как выглядит сфера. Идея заключается в том, чтобы рассмотреть сечения сферы при пересечении ее с плоскостью, в которой мы живем и из которой мы эту сферу наблюдаем. Когда сфера просто касается нашей плоскости, мы видим лишь точку. Потом появляются концентрические круги, которые по мере прохождения сферы через плоскость сначала расширяются, а потом сужаются, пока снова не превратятся в точку.



Следует подчеркнуть, что в этом примере мы четко представляем ситуацию, потому что мы в состоянии воспринимать трехмерные объекты, чего нельзя сказать о нашем восприятии объектов в четырехмерном пространстве. Тем не менее, пример иллюстрирует то, что происходит в месте пересечения объекта и нашей плоскости. Этот момент очень важен, поскольку он тесно связан с так называемыми нулями функции.

Например, выражение — (5x/2) + 5 = 0 можно легко превратить в функцию, записав в виде:

γ = — (5x/2) + 5

Если мы построим ее график, то получим прямую линию. Точка пересечения этой линии с горизонтальной осью (х = 2) является решением уравнения у = 0:



Аналогично если у нас есть квадратное уравнение х>2 + х — 2 = 0 и мы построим график функции f(x) = х>2 + х — 2, то увидим, что он пересекает ось X (у = 0) в двух точках, которые являются решением уравнения: х = 1 и х = —2.



Если мы обобщим задачу на три измерения, то, например, уравнение х