Том 3. Простые числа. Долгая дорога к бесконечности | страница 48
Мнимые числа имеют практическое применение в электронике. Действительные числа используются для измерения сопротивления — свойства объекта препятствовать прохождению через него электрического тока. А мнимые числа используются для измерения индуктивности (отношения магнитного потока к силе тока в катушке) и емкости (отношения величины электрического заряда к разности потенциалов между пластинами конденсатора).
Квадратный корень из числа а, записываемый как √а, — это такое число, квадрат которого (результат умножения на себя) равен а. Другими словами, √а = b означает, что b>2 = а. Например,
√4 = 2, потому что 2>2 = 4;
√9 = 3, потому что З>2 = 9.
С другой стороны, существует «правило знаков» при умножении и делении: плюс на плюс дает плюс, плюс на минус дает минус, и минус на минус дает плюс.
При записи в символах это выглядит так:
+ x + = +
+ х — = — х + = -
— x — = +
Возьмем в качестве примеров некоторые числа:
5 х 2 = 10;
— 5 x 2 = -10;
— 5 x -5 = 25.
Таким образом, квадрат числа, результат умножения на себя, никогда не может дать отрицательное число. Если исходное число положительное, то «плюс на плюс» даст положительный результат, а если исходное число отрицательное, то «минус на минус» также даст положительный результат. Именно поэтому в принципе невозможно извлечь квадратный корень из отрицательного числа. Например, √-4 не может равняться 2, так как 2 х 2 = 4, и не может равняться —2, так как -2 x -2 = 4.
Таким образом, мы можем утверждать, что √1 = 1, но √—1 не существует. Этот корень не существует как действительное число, но ничто не мешает нам определить его как «мнимое» число, которое мы будем обозначать буквой i:
√-1 = i
Давайте посмотрим, что происходит с числом i при возведении его в различные степени:
√-1 = i
i>2 = (√-1)>2 = -1
i>3 = i>2 х i = -1 х i = — i;
i>4 = i>3 x i = —i x i = i>2 = — (-1) = 1.
Продолжая таким образом, получим:
i>5 = i;
i>6 = -1;
i>7 = — i;
i>8 = 1
…
Необходимость найти значение квадратного корня из отрицательного числа возникает тогда, когда мы решаем определенные квадратные уравнения. Известно, что уравнения вида ах>2+ Ьх + с = 0 имеют два решения, выражаемые формулой:
Но эта формула не работает, когда число под корнем отрицательное.
В трактате Джироламо Кардано Ars magna («Великое искусство»), опубликованном в 1545 г., была сформулирована следующая задача: «Разделить 10 на две части, произведение которых равно 40». Если мы обозначим эти две части буквами х и