Том 3. Простые числа. Долгая дорога к бесконечности | страница 29






Банкнота 10 швейцарских франков 1997 г. выпуска с портретом Эйлера и изображениями гидравлической турбины, солнечной системы и света, проходящего через линзу. Все это иллюстрирует вклад Эйлера в математику.


Эйлер всегда проявлял особый интерес к простым числам. Он составил таблицу всех простых чисел от 1 до 100 000 и нашел формулы, которые позволяли ему получать невероятные количества таких чисел. Одной из наиболее интересных является следующая формула:

х>2+ х + q,

которая генерирует простые числа для любых значений х, больших 0 и меньших q — 2.

Эйлер нашел все такие простые числа для = 2, 3, 5, 7, 11 и 17. В то время математика была экспериментальной, ее целью было получение практических результатов, поэтому строгие доказательства часто отсутствовали. Однако в отличие от Ферма Эйлер не скрывал своей работы. Если у него было доказательство, он публиковал его, а если факт приводился без доказательства, значит, оно не было найдено.

Работы Эйлера привели к важным изменениям в мире математики, вызвав медленный, но неумолимый сдвиг научной мысли. Среди многочисленных достижений Эйлера есть три, которые оказали решающее влияние на дальнейшие исследования в теории простых чисел: понятия функции, бесконечных сумм и мнимых величин.

Позже мы еще вернемся к ним.


Функции

Эйлер заложил основы того, что в последующие века будет называться математическим анализом. Именно он ввел обозначение функции, f(х), которое используется и в настоящее время. Функция работает как устройство, которое преобразует числа в другие числа в соответствии с установленным правилом. (Мы имеем в виду действительные функции действительного переменного.) Например, если правило гласит, что к каждому числу нужно прибавить определенное число, например, 3, то функция записывается следующим образом:

f(х) = x + 3.

Теперь функцию можно применить к любым значениям переменной:

f(1) = 1 + 3 = 4;

f(2) = 2 + 3 = 5;

f(24) = 24 + 3 = 27;

f(0,32) = 0,32 + 3 = 3,32.

Действительные функции действительного переменного ставят в соответствие каждому действительному числу другое действительное число. Например, функция f(x) = + 1 каждое значение х увеличивает в два раза и прибавляет единицу. Составим таблицу значений этой функции:



Эта таблица позволяет построить график функции по вышеуказанным координатам точек:



Это очень простой график, он представляет из себя прямую линию, построить которую можно всего по двум точкам. С другой стороны, функция вида