Знание-сила, 1999 № 01 (859) | страница 8
Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось; но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень – 5.
Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители – дело тонкое. Даже Эйлер не разобрался в нем до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд – учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: все, чего коснулись его руки и разум, не будет забыто новой ученой молодежью.
Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 – и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.
Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый ученый ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось; оттого в XIX веке научно- технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.
Гaycc по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог все, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, laycc переводит эту задачу на язык алгебры – и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9- угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.