Физика сплошных сред | страница 99



В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое инду­цируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отно­шения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изме­нений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оста­ваться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется и сила тока в обмотках, т. е. вместе с преобразованием напряжения про­исходит и преобразование тока.

§ 5. Электромагниты

Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электро­магнит стандартной формы, изображенный на фиг. 36.10.

Фиг. 36.10. Электромагнит.

Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?

Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем счи­тать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.

Фиг. 36.11. Поперечное сечение электромагнита.

Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянст­ве потока В через любое попереч­ное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма ме­няется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.

Поле В в зазоре будет по величине тем же самым. Это следу­ет из уравнений (36.16). Представьте себе замкнутую поверх­ность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В>1 величину поля в зазоре, а через B>2 — величину поля в железе, мы видим, что

B>1A>1>2А>2=0,

а поскольку А>1>2, то отсюда следует, что В>1>2.

Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,6). Как и прежде, правая часть равна