Физика сплошных сред | страница 112



и, заметив, что thx=М/М>нас, найти, что средняя энергия про­порциональна М>2:

Если мы теперь построим график зависимости намагниченности от температуры, то получим кривую, которая описывается от­рицательным квадратом функции (37.1) и представлена на фиг. 37.2, а. Если бы мы измеряли удельную теплоемкость такого материала, то получили бы кривую (фиг. 37.2, б), ко­торая представляет производную кривой, изображенной на фиг. 37.2, а.

Фиг. 37.2. Энергия в единице объема и удельная теплоемкость ферромагнитного материала.

С увеличением тем­пературы эта кривая медленно растет, но затем при Т = Т>снео­жиданно падает до нуля. Резкое падение вызвано изменением на­клона кривой магнитной энер­гии, и кривая ее производной попадает прямо в точку Кюри. Таким образом, совершенно без магнитных измерений, лишь наб­людая за термодинамическими свойствами, мы бы смогли уста­новить, что внутри железа или никеля что-то происходит. Однако как из эксперимента, так и из улучшенной теории (с учетом внутренних флуктуации) следует, что эти простые кривые неправильны и что истинная картина на самом деле бо­лее сложна. Пик этих кривых поднят выше, а падение до нуля происходит несколько медленнее. Даже если температура до­статочно велика, так что спины в среднем распределены совер­шенно случайно, все равно попадаются области с определенным значением намагниченности, и спины в этих областях продол­жают давать небольшую дополнительную энергию взаимодей­ствия, которая медленно уменьшается с ростом температуры и увеличением беспорядка. Так что реальная кривая выглядит так, как показано на фиг. 37.2, в. Одна из целей физики сегод­няшнего дня — найти точное теоретическое описание удельной теплоемкости вблизи точки перехода Кюри — захватывающая проблема, не решенная до сих пор. Естественно, что эта пробле­ма очень тесно связана с формой кривой намагничивания в той же самой области.

Опишем теперь некоторые эксперименты, отнюдь не термоди­намического характера, которые показывают, что мы все же в каком-то смысле правы в нашей интерпретации магнетизма. Когда материал при достаточно низких температурах намагни­чен до насыщения, то М очень близка к М>нас, т. е. почти все спины, равно как и магнитные моменты, параллельны. Это можно проверить экспериментально. Предположим, что мы подвесили магнитную па­лочку на тонкой струне, а затем окружили ее катушкой, так что мо­жем менять магнитное поле, не притрагиваясь к магниту и не прикладывая к нему никакого момента сил. Это очень трудный эксперимент, ибо магнитные силы столь велики, что любая нерегулярность, любой перекос или несо­вершенство в железе могут дать случайный момент. Однако такой эксперимент был выполнен со всей необходимой аккурат­ностью и роль случайных моментов была сведена до минимума. С помощью магнитного поля катушки, которая окружает па­лочку, мы сразу можем перевернуть все магнитные моменты. Когда мы это проделаем, то заодно «сверху вниз» перевернутся и все моменты количества движения, связанные со спином (фиг. 37.3).