Физика сплошных сред | страница 111



намагниченности соседних с ним ато­мов. Другими словами, каждый атом со спином, направленным вверх, находящийся по соседству с данным атомом, из-за квантовомеханического эффекта выстраивания вносит свой вклад в энергию. А сколько таких атомов? В среднем это из­меряется величиной намагниченности, но это только в сред­нем. Может оказаться, что для какого-то одного атома спины всех его соседей направлены вверх. Тогда его энергия будет выше средней. У другого же спины некоторых соседей направ­лены вверх, а некоторых — вниз, а среднее может быть нулем, и тогда никакого вклада в энергию вообще не будет и т. д. Из-за того что атомы в разных местах имеют различное окружение с различным числом направленных вверх и вниз спинов, нам следовало бы воспользоваться более сложным способом усред­нения. Вместо того чтобы брать один атом, подверженный сред­нему влиянию, нам следовало бы взять каждый атом в его реаль­ной обстановке, подсчитать его энергию, а затем найти среднюю энергию. Но как же все-таки определить, сколько соседей ато­мов направлено вверх, а сколько — вниз? Это как раз и нужно вычислить, но здесь мы сталкиваемся с очень сложной задачей внутренних корреляций,— задачей, которую никому еще не уда­валось решить. Эта животрепещущая и интригующая проблема в течение многих лет волновала умы физиков; по этому вопросу писалось множество статей крупнейшими учеными, но и они не могли найти полного решения.

Оказывается, что при низких температурах, когда почти все атомные магниты направлены вверх и лишь некоторые направ­лены вниз, задача решается довольно легко; то же самое можно сказать и о высоких температурах, значительно превышаю­щих температуру Кюри Т>с, когда почти все они направлены совершенно случайно. Часто легко вычислить небольшие откло­нения от некоторой простой идеализированной теории, и до­вольно ясно, почему такие отклонения имеются при низких температурах. Физически понятно, что по статистическим при­чинам намагниченность при высоких температурах должна исчезать. Но точное поведение вблизи точки Кюри никогда во всех подробностях не было установлено. Это очень интересная задача, над которой стоит потрудиться, если когда-нибудь вам вздумается взяться за еще не решенную проблему.

§ 2. Термодинамические свойства

В предыдущей главе мы заложили основу, необходимую для вычисления термодинамических свойств ферромагнитных ма­териалов. Они, естественно, связаны с внутренней энергией кристалла, которая обусловлена взаимодействием между раз­личными спинами и определяется формулой (37.3). Для нахож­дения энергии, связанной со спонтанной намагниченностью (ни­же точки Кюри), мы можем в уравнении (37.3) положить