Физика сплошных сред | страница 102
Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула
похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:
Эти два набора уравнений можно считать аналогичными, если мы чисто математически сопоставим
Это то же самое, что и
Другими словами, если уравнения ферромагнетизма записать как
то они будут похожи на уравнения электростатики.
В прошлом это чисто алгебраическое соответствие доставило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убедились, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравнения и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одинаковые уравнения имеют одинаковые решения.
Теперь можно воспользоваться нашими предыдущими результатами о полях внутри полости различной формы в диэлектриках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:
Но поскольку в нашей полости М равна нулю, то мы получаем
С другой стороны, для дискообразной полости, перпендикулярной М,
что в нашем случае превращается в
или в величинах В:
Наконец, для сферической полости аналогия с уравнением (36.3) дала бы
Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.
Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения С·B=0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.