Кинетика. Теплота. Звук | страница 7



(иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.

В случае одноатомного газа мы предположим, что полная энергия U равна произведению числа атомов на среднюю кине­тическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатом­ными движениями. Тогда

PV=>2/>3U. (39.10)

Немного задержимся и ответим на такой вопрос: предпо­ложим, что мы медленно сжимаем газ; каким должно быть давление, чтобы сжать газ до заданного объема? Определить это легко, так как давление есть энергия, деленная на объем. Но когда газ сжимается, производится работа и поэтому энер­гия газа U возрастает. Процесс сжатия описывается неким диф­ференциальным уравнением. В начальный момент газ занимает определенный объем и обладает определенной энергией, поэ­тому нам известно и давление. Как только мы начинаем сжи­мать газ, энергия U возрастает, объем V уменьшается, а как изменяется давление, нам еще предстоит узнать.

Итак, нам предстоит решить дифференциальное уравнение. Сейчас мы это сделаем. Однако подчеркнем сначала, что, сжи­мая газ, мы предполагаем, что вся работа уходит на увеличение энергии атомов газа. Вы спросите: «А необходимо ли на этом останавливаться? Куда же еще она может уйти?» Но оказыва­ется, что затраченная работа может уйти и в другое место. Энергия может «вытечь» из ящика сквозь стенки: горячие (т. е. очень быстрые) атомы при бомбардировке будут нагревать стенки ящика и энергия выйдет наружу. Но мы предполагаем, что в нашем случае этого не происходит.

Сделаем небольшое обобщение, хотя и в этом случае мы бу­дем рассматривать лишь очень частный случай: запишем вместо PV=>2/>3U

PV = (g-1)U. (39.11)

Энергия U умножается на (g-1) для удобства, потому что в дальнейшем нам придется иметь дело с газами, для которых множитель перед U равен не >2/>3, а какому-то другому числу. Чтобы можно было описывать и такие случаи, запишем этот множитель так, как его обозначают почти сто лет. Тогда в на­шем случае одноатомного газа, такого, как гелий, g=>5/з, потому что >5/>3-1=>2/з.

Мы уже говорили, что совершаемая при сжатии газа работа равна -PdV. Сжатие, при котором тепло не поглощается и не выделяется, называется адиабатическим сжатием; это слово образовано из трех греческих слов: а(не)+dia(сквозь)+bainein(проходить). (Слово адиабатический употребляется в фи­зике в разных смыслах, так что не всегда можно понять, что между ними общего.) При адиабатическом сжатии вся затрачен­ная работа уходит на изменение внутренней энергии. Вот в этом и смысл, что нет потерь энергии и, значит,