Кинетика. Теплота. Звук | страница 32
Мы сформулируем без доказательства основные результаты статистической механики, построенной на основе квантовой механики. Напомним, что, согласно квантовой механике, связанная потенциалом система, например осциллятор, имеет дискретный набор уровней энергии, т. е. состояний с различной энергией. Возникает вопрос: как модифицировать статистическую механику, чтобы привести ее в согласие с квантовой механикой? Обратите внимание на интересную деталь: хотя большинство задач квантовой механики сложнее соответствующих задач классической физики, проблемы статистической механики решаются с помощью квантовой теории много проще!
Простенький результат классической механики, что n= n>0ехр(-энергия/kT), становится в квантовой теории весьма важной теоремой: если набор молекулярных состояний характеризуется энергиями Е>0, Е>1, e>2, ..., Е>i, ..., то в случае теплового равновесия вероятность найти молекулу в состоянии с энергией Е>iпропорциональна ехр(-E>i/kT). Так определяется вероятность пребывания в различных состояниях. Иначе говоря, относительный шанс — вероятность нахождения в состоянии Е>1по сравнению с вероятностью нахождения в состоянии Е>0равен
это, конечно, то же самое, что и
потому что Р>1=n>1/N, а Р>0=n>0/N. Таким образом, состояния с большей энергией менее вероятны, чем состояние с меньшей энергией. Отношение числа атомов в верхнем состоянии к числу атомов в нижнем состоянии равно е в степени (разность энергий, деленная на kT,с обратным знаком) — очень простая теорема.
Обратим внимание на то, что уровни энергии гармонического осциллятора отстоят друг от друга на равных расстояниях. Припишем низшему уровню энергию Е>0=0 (на самом деле эта энергия немного отличается от нуля, но сдвиг всех уровней на одну и ту же величину не имеет значения), тогда энергия следующего уровня E>1=hw, затем следует 2hw, 3hw) и т. д.
А теперь посмотрим, что из этого получится. Предположим, что мы изучаем колебания двухатомной молекулы, которую можно сейчас считать гармоническим осциллятором. Каковы относительные шансы найти молекулу в состоянии Е>1, а не в состоянии Е>0? Ответ: Отношение шанса найти молекулу в состоянии Е>1 к шансу найти эту молекулу в состоянии Е>0равно ехр(-hw/kT}. Предположим, что kT много меньше hw, т. е. мы находимся в области низких температур. Тогда вероятность обнаружить состояние e>1чрезвычайно мала. Практически все молекулы находятся в состоянии Е>0. Если изменить температуру, но по-прежнему поддерживать ее очень малой, то шанс найти молекулу в состоянии