Кинетика. Теплота. Звук | страница 31



Первая замечательная работа по динамической теории газов была сделана Максвеллом в 1859 г. Исходя из идей, с которыми мы только что познакомились, он сумел точно объяснить очень много известных явлений, таких, как закон Бойля, теорию диф­фузии, вязкость газов и другие вещи, о которых мы еще будем говорить в следующей главе. Подводя итог всем этим великим достижениям, он писал: «Наконец, установив необходимое со­отношение между поступательным и вращательным движе­нием несферических частиц (он имел в виду теорему о >l/>2kT), мы доказали, что в системе из таких частиц не может выпол­няться известное соотношение между двумя теплоемкостями». Он говорит здесь о g (позднее мы увидим, что эта величина связана с двумя разными способами измерения удельной теплоемкости) и замечает, что никто не в состоянии дать вер­ного ответа.

В прочитанной десять лет спустя лекции он сказал: «Я дол­жен изложить Вам то, что я считаю наибольшей трудностью, стоящей перед молекулярной теорией». Это было первое ука­зание на ложность законов классической физики, первое предчувствие того, что существует нечто, необъясненное с са­мого начала, ибо опыту противоречила строго доказанная теорема.

Примерно в 1890 г. Джинс заговорил вновь об этой загадке. Часто приходится слышать, что физики конца девятнадцатого столетия были уверены в том, что им известны все существен­ные законы природы и дело стоит лишь за тем, чтобы получить нужные числа с максимальным числом десятичных знаков. Кто-то это сказал, а остальные повторяют. Но если покопаться в физических журналах тех лет, то станет ясно, что почти каж­дый из них в чем-нибудь да сомневался. Джинс говорил об этой проблеме как о загадочном явлении, из которого как будто бы следует, что по мере падения температуры некоторые виды движения «замерзают».

Если бы мы могли предположить, что колебаний при низ­ких температурах нет и возникают они только при высоких темпе­ратурах, то можно было бы представить существование такого газа, у которого при очень низкой температуре колебательного движения нет совсем, так что g=1,40, а при высоких темпера­турах возникают колебания и, следовательно, g убывает. То же самое можно предположить и о вращениях. Если бы можно было избавиться от вращений, скажем, «заморозить» их, по­низив достаточно температуру, то стало бы понятно, почему при низких температурах для водорода g приближается к 1,66. Но как же понять все это? Конечно, оставаясь в рамках классической механики, «замерзающих» движений нельзя объяснить. Все стало на свои места лишь после открытия квантовой меха­ники.