Излучение. Волны. Кванты | страница 33
Отвлечемся пока от угла q и постоянных и посмотрим, как ведет себя Е (29.3) в зависимости от времени или координат.
§ 2. Энергия излучения
Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что энергия, несомая волной, и любые энергетические характеристики электрического поля пропорциональны квадрату поля. Пусть, например, заряд или осциллятор находится в электрическом поле и под влиянием поля начинает двигаться. Для линейного осциллятора смещение, ускорение и скорость, возникающие под действием поля, прямо пропорциональны величине поля. Поэтому кинетическая энергия заряда пропорциональна квадрату поля. Мы примем, что энергия, которую поле может передать какой-либо системе, пропорциональна квадрату поля.
Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстояния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в источнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоянии r>2; тогда количество энергии, падающее на единичную площадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорционально квадрату расстояния r от поверхности до вершины конуса. Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сторон поглощающими осцилляторами, то полное количество энергии, поступающее в них от волны, будет постоянным, независимо от расстояния до источника.
Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстояния r, на котором оно измеряется.
Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, который нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для достаточно больших расстояний от источника вся излученная энергия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.