Юный техник, 2000 № 11 | страница 11
А теперь вернемся к делам знакомого уже нам с вами профессора МВТУ Алексея Нестеровича Шелеста (см. «ЮТ» № 9, 1999 г.).
В 1914 году при расчете своего тепловозного двигателя Алексей Нестерович получил столь высокое значение КПД, что отказался в это поверить.
Ученый разобрался, что повинны в этом таблицы теплоемкостей. Хоть и выпущенные разными очень серьезными научными школами, но данные их местами различались между собою на 50 и более процентов! Что прикажете делать при таких обстоятельствах? Составлять собственную правильную таблицу? Но на это потребуется полжизни! Да и где гарантия, что именно она будет точнее других?
И вот недавний выпускник института, инженер, занимавшийся вещами сугубо практическими: вагонами, рельсами, паровыми машинами и дизелями, даже водонапорными башнями — садится за квантовую механику.
Науку еще очень молодую, непонятную, почти никем не признанную. На ее основе выводит некие математические зависимости, позволяющие точно рассчитывать теплоемкость любых веществ, и формулирует закон теплоемкости.
В 1922 году в Лейпциге на немецком языке вышла из печати книга А.Н.Шелеста «Теплоемкости газов и паров». В ней впервые был сформулирован закон теплоемкостей, объективно действующий в природе независимо от воли людей. Согласно этому закону молярные (относящиеся к одному молю вещества) теплоемкости всех тел прямо пропорциональны числу атомов в молекуле. Были разработаны формулы для определения молярных теплоемкостей жидкостей, твердых тел и газов.
Теплоемкость твердых и жидких тел по закону профессора А.Н.Шелеста определяется по формуле:
C>p= Z x 4,157(lnT/36,09 + 1) кДж/молК.
Теплоемкость газов в зависимости от температуры находится по другой формуле:
C>v= Z х 4,157(lnT/98,1 + 1) кДж/молК,
где Z — число атомов в молекуле, Т — температура в градусах Кельвина.
(Чтобы перейти от молярной к более привычной теплоемкости одного кг вещества, достаточно ее разделить на молекулярный вес.)
Надо сказать, что потребность техники в точном знании теплоемкости с каждым годом росла. И ученые-экспериментаторы всячески шли ей навстречу, хотя это было не просто. Вот как, например, выяснили теплоемкость газов. Из-за малой плотности определять ее непосредственно, как, например, это делается для твердых тел на лабораторных работах в школе, не удавалось. Приходилось прибегать к косвенным методам.
Один из них основан на измерении скорости звука в газе. Газом наполняется длинная труба. С одной стороны она закрыта упругой стальной мембраной, по которой ударяют молотком.