Расследование и предупреждение техногенных катастроф. Научный детектив | страница 30
тх>1 = -2х>1 +х>2 + х>3 (10)
Если момент сопротивления используемого механизма является стационарным случайным процессом со спектром
то для простейшего случая α = 1 переменная х>3 и ее производная х>4 будут удовлетворять уравнениям:
Система трех дифференциальных уравнений (10)—(12) является математической моделью электропривода как объекта управления. Колебания частоты вращения можно уменьшить за счет регулятора с обратной связью. Пусть в этом регуляторе управляющее воздействие х>2 формируется в функции от остальных переменных по закону:
х>2 = -X>1 - 2х>3 —х>4 (13)
Тогда система четырех уравнений (10), (12), (13) является математической моделью замкнутой системы управления. Уравнения (10)—(12) типичны для многих электроприводов, а формируя управляющее воздействие в виде (13) мы следуем известным рекомендациям А. М. Летова. Для удобства дальнейших расчетов мы округлили параметры электропривода до целых чисел, но в целом система уравнений (10), (12), (13) отражает вполне типичную практическую ситуацию.
Исследуем устойчивость этой системы и влияние на устойчивость изменений параметра m -механической постоянной времени электропривода. Если текущее время t, входящее в уравнения (10), (12), (13), измерять в долях механической постоянной времени, то номинальное значение параметра m будет равно единице, но в ходе эксплуатации электропривода возможен, разумеется «дрейф» этого параметра и отклонение его от значения m = 1.
Устойчивость замкнутой системы зависит от корней характеристического полинома (т. е. от «собственных значений» системы), а характеристический полином системы (10), (12), (13) равен легко вычисляемому определителю:
Мы убеждаемся, что характеристический полином замкнутой системы имеет три корня (три «собственных значения»):
(один из корней — кратный) и эти корни отрицательны для всех т в диапазоне
Таким образом, замкнутая система устойчива и сохраняет устойчивость не только при малых, но и при больших отклонениях параметра т от номинального значения т = 1.
Решения системы уравнений (10), (12), (13) имеют вид