Расследование и предупреждение техногенных катастроф. Научный детектив | страница 29



Эти примеры еще и еще раз показывают — к каким страшным последствиям приводит пренебрежение к предостережениям науки.

Если граждане России не хотят гибнуть в техногенных катастрофах, они должны уважать науку и слушать ее. И особенно это должны делать представители власти и депутаты: они летают чаще рядовых граждан, им и предстоит первыми гибнуть в авиакатастрофах, предотвращать которые не желают федеральные агентства и инспектора, призванные следить за безопасностью жизни людей. Депутатам надо следить за деятельностью органов власти (и особенно — контролирующих органов), требовать от них исполнения своих обязанностей. А гражданам России на выборах надо выбирать таких депутатов и такие политические партии, которые заботятся о жизнях граждан, борются с причинами техногенных катастроф и требуют такой же борьбы от представителей власти.

ЧАСТЬ II

§ 10. Разъяснение загадок

В предыдущих разделах основной задачей автора было обеспечение доступности изложения. Не использовались никакие математические средства, кроме знакомых каждому по средней школе простейших алгебраических уравнений. При этом, естественно, не удавалось разъяснить некоторые тонкие вопросы: почему, например, аварии, причиной которых является встреча с «особым» объектом, обладают особенными чертами, описанными в параграфе 8 и позволяющими правильно определить причину аварии. Остались, возможно, не до конца понятными (а может быть и загадочными) некоторые другие вопросы.

В настоящей второй части мы разъясним эти загадки, но для понимания их от читателя потребуется — в отличие от первой части — знание математики в объеме технического вуза и, в частности, знакомство с простейшими линейными дифференциальными уравнениями с постоянными коэффициентами и методами расчета устойчивости их решений.

Рассмотрим электропривод постоянного тока, математической моделью которого является простое дифференциальное уравнение первого порядка:


  

                                                          (9)

где ω — частота вращения, і — ток якоря, который в регулируемых приводах является управляющим воздействием, М — момент сопротивления исполнительного механизма, m — механическая постоянная времени электропривода, численно равная времени его разгона от нулевой частоты вращения до номинальной при номинальном токе якоря и нулевом моменте сопротивления.

Обозначим через χ>1, х>2 и х>3 отклонения частоты вращения, тока якоря и момента сопротивления