Расследование и предупреждение техногенных катастроф. Научный детектив | страница 31
где C>1, C>2, C>3 — постоянные интегрирования. Для х>2, х>3, х>4 формулы аналогичны. Мы убеждаемся, что отклонение х быстро затухает с течением времени. Система устойчива для любых т> 0 .
Однако момент сопротивления х>3 и особенно его производную х>4 очень трудно непосредственно измерить и ввести в канал обратной связи. Поэтому целесообразно исключить из уравнения объекта управления и регулятора переменные х и х путем эквивалентных преобразований. Проделав их, придем к уравнениям (где
является символом оператора дифференцирования):
[mD>3 + (2 + 2 m)D>2 + (4 + m)D + 2]x>1= (D +1)>2 x>2 (16)
[mD>2 + (2 + 2m)D + 5]x>1 = (D + 1)x>2 (17)
Уравнение (16) является уравнением объекта управления, уравнение (17) — уравнением регулятора, который на этот раз для формирования управляющего воздействия х>2 использует легко доступную для непосредственного измерения переменную х>1.
Для исследования устойчивости системы (16)—(17) достаточно найти корни ее характеристического полинома.
И вот здесь исследователей подстерегала трудность, которая надолго задержала правильный ответ о причинах техногенных катастроф, связанных с «аналитически сконструированными» регуляторами, и укоротила жизнь А. М. Летова: если вычислять характеристический полином системы (16)—(17) по общим математическим правилам как определитель:
то он, как легко проверить, будет равен определителю (14) и мы снова должны будем сделать вывод о том, что замкнутая система устойчива и сохраняет устойчивость при «дрейфе» параметра m .
Однако этот вывод будет ошибочен! Дело в том, что объект управления (электропривод) и регулятор — это разные (хотя и расположенные рядом) устройства, поэтому «дрейф» их параметров может идти независимо друг от друга, образуя самые причудливые комбинации. Рассмотрим простейший (но возможный) случай: параметры регулятора остались равными номинальным значениям (соответствующим т — 1), а в объекте управления механическая постоянная времени немного изменилась. Для анализа устойчивости этого случая надо вычислить определитель:
Пусть m = 1 + ε, где ε - малое число и можно пренебречь членами с ε>2, ε>3 и др. Тогда сразу видно, что при ε > 0 замкнутая система неустойчива, в решении системы, кроме членов, отраженных формулой (15), появляется очень быстро растущий четвертый член вида