Юный техник, 2001 № 06 | страница 11



— карлик (отсюда, кстати, и нанометр — одна миллиардная доля метра).

Термин появился в середине XX века благодаря нобелевскому лауреату, известному физику Ричарду Фейнману. Еще в 1959 году он предсказал, что человечество скоро научится манипулировать отдельными атомами, молекулами или живыми клетками и сможет синтезировать все, что угодно. Сам Фейман не дожил до осуществления своей мечты, но идея осталась жить.




Первые шаги

В 1981 году ученые швейцарского отделения фирмы IBM изобрели силовой туннельный микроскоп. Мы уже рассказывали об этом удивительном инструменте подробно, поэтому лишь вкратце напомним.

Над полупроводниковой или металлической подложкой расположена тончайшая вольфрамовая игла. Напряжение порядка 10 вольт создает разность потенциалов между иглой и подложкой, являющимися в данном случае как бы обкладками конденсатора. Причем из-за малости зазора и крошечных размеров кончика иглы напряженность электростатического поля получается весьма солидной — около 10>8 В/см. Это поле и является основной действующей силой туннельного микроскопа: точнее, одной из его разновидностей — атомного силового микроскопа.

Работать этот агрегат может в двух режимах. Если с помощью специальной схемы поддерживать ток между иглой и подложкой постоянным, то при сканировании (многократном проведении иглы над поверхностью) она будет то опускаться, то приподниматься, в зависимости от рельефа, как патефонная игла копирует профиль поверхности.

Поскольку любой механический привод весьма груб, перемещениями иглы на субатомные расстояния управляют с помощью пьезоэффекта. Керамическая пьезотрубка при подаче на ее электроды управляющего напряжения меняет свою форму и размеры, что позволяет в зависимости от сигнала перемещать иглу по трем координатам. Насколько велика чувствительность микроманипулятора, можно судить по таким цифрам: при изменении напряжения на 1В таким игла смещается на величину порядка 2–3 нанометров.

Ведя таким образом иглу над поверхностью рельефа, довольно просто получить серию электрических кривых, которые с высокой степенью точности будут описывать характер изучаемой поверхности. Воочию ее можно увидеть на экране персонального компьютера.



1. Нанороботы внутри кровеносных сосудов ведут ремонт организма.

2. Эти шестеренки, едва видимые на ладони невооруженным глазом, — детали первых наномеханизмов.


Изобретение такого микроскопа стало этапной вехой в создании практической нанотехнологии. Ведь, кроме «микроскопии на ощупь», с помощью аналогичной установки можно формировать саму поверхность. Хорошо известно, что электрическое поле влияет на характер диффузии — проникновения атомов со стороны в поверхностные слои вещества.