Новый ум короля: О компьютерах, мышлении и законах физики | страница 69



>n — корректно определенная машина, то появление последовательности 111110 действительно будет означать конец записи номера n.) Все, что следует за ней, должно быть просто записью числа m на ленте в соответствии с приведенными выше правилами (т. е. двоичное число m и строка 1000… непосредственно за ним). Таким образом, с этой второй частью ленты машина T>n и должна производить предполагаемые действия.

Если в качестве примера мы возьмем n =11 и m =6, то на ленте, вводимой в мащину U, мы будем иметь последовательность

000101111111011010000..

Она образована из следующих составляющих:

… 0000 (пустое начало ленты)

1011 (двоичное представление одиннадцати)

111110 (обозначает окончание числа n )

110 (двоичное представление шести)

10000… (остаток ленты)

То, что машина Тьюринга U должна была бы делать на каждом очередном шагу процедуры, выполняемой T>n над m — это исследовать структуру последовательности цифр в выражении n с тем, чтобы можно было произвести соответствующие изменения цифр числа m (т. е. «ленты» машины T>n ). В принципе, реализация такой машины не вызывает существенных затруднений (хотя и довольно громоздка на практике). Список ее собственных команд должен был бы просто содержать правила для чтения подходящей команды из «списка», закодированного в числе n, на каждом этапе выполнения действий над цифрами, считанными с «ленты», как они фигурируют в числе m. Можно предположить, что при этом совершалось бы значительное количество прыжков взад-вперед по ленте между цифрами, составляющими n и m, и выполнение процедуры было бы чрезвычайно медленным. Тем не менее, список команд подобной машины, несомненно, можно составить, и такая машина называется нами универсальной машиной Тьюринга. Обозначая ее действие на пару чисел (n, m ) через U(n, m ), мы получаем:

U(n, m ) = Т>n(m )

при любых (n, m ), для которых T>n — корректно определенная машина Тьюринга[47]. Машина U, в которую первым вводится число n, в точности имитирует n-ю машину Тьюринга!

Поскольку U — машина Тьюринга, то она сама будет иметь номер. То есть, для некоторого числа u имеем

U = T>u.

Сколь велико u ? В сущности, мы можем положить, что uвточности равно следующему числу:

u =7244855335339317577

198395039615711237

952360672556559631

108144796606505059

404241090310483613

632359365644443458

382226883278767626

556144692814117715

017842551707554085

657689753346356942

478488597046934725

739988582283827795

294683460521061169

835945938791885546