Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление | страница 18
Прекрасный пример интеллектуальной честности.
В чем же заключалась ошибка Пуанкаре? Французский математик заявил, что нашел бесконечное множество периодических решений задачи трех тел, но потом обнаружил, что некоторые эти решения не были периодическими, так как не описывали замкнутые кривые. Именно благодаря этой грубой ошибке Пуанкаре смог обнаружить, что двоякоасимптотические решения, сепаратрисы, проходящие через седловые точки (эти точки Пуанкаре называл гомоклиническими), определяли хаотические орбиты.
Рассмотрим эту ситуацию подробнее. Пуанкаре и Бендиксон смогли доказать свою теорему на плоскости, в двух измерениях. Так как траектории на фазовой плоскости не могут пересекаться, число корректных траекторий невелико. Как мы уже показали, существует всего пять основных видов траекторий: они могут приближаться к особой точке, удаляться от нее (для фокусов, узлов и седел) либо периодически вращаться вокруг центра или вблизи предельного цикла.
В задаче трех тел, движущихся под действием сил взаимного притяжения, рассматривается трехмерное пространство, которое допускает куда больше сочетаний и возможных случаев. В фазовом пространстве все обстоит намного сложнее: траектории необязательно должны пересекаться — достаточно, чтобы они переплетались между собой. На плоскости, в отличие от трехмерного пространства, траектории не могут сплетаться. Кроме того, если число измерений пространства больше двух, система может иметь аттракторы, которые будут весьма заметно отличаться от особых точек (фокусов) и предельных циклов. Как вы узнаете из следующей главы, в многомерных пространствах возникают так называемые странные аттракторы, которые, как правило, сопутствуют хаосу.
В трехмерном пространстве траектории-решения могут переплетаться между собой.
Но как Пуанкаре справился с этими трудностями и нашел периодические решения в пространстве? Он применил метод, называемый сегодня сечениями Пуанкаре.
Так как изучать динамику на плоскости намного проще, чем в пространстве, ученый рассмотрел плоскость, заключенную в фазовом пространстве и полностью рассекающую трехмерный пучок траекторий. Нечто похожее мы делаем каждый день, когда проверяем, червивое ли яблоко: мы разрезаем его ножом и осматриваем поперечное сечение.
Допустим, что человек в течение всего дня носит с собой катушку ниток, разматывая ее. Нитка укажет траекторию этого человека. Теперь предположим, что мы неожиданно потеряли его след и не знаем, вернулся ли он домой. Как найти ответ? На помощь приходит топология, в частности теория Пуанкаре: плоскость, в которой располагается дверь дома нашего беглеца, станет сечением Пуанкаре.