Гравитация. От хрустальных сфер до кротовых нор | страница 47



прямой, например, 0A на рис. 5.2. Для движущегося наблюдателя сечения одновременности также наклонятся. Остаётся сделать вывод: чтобы перейти к базису движущейся инерциальной системы отсчёта нужно осуществить поворот исходного базиса. При этом угол поворота соответствует относительной скорости между системами. Вспомним, что две системы отсчёта связаны преобразованиями Лоренца. Именно поэтому такие повороты базиса называют лоренцевыми вращениями.

На рис. 5.3 на диаграмме пространства Минковского изображён базис неподвижной системы K с не штрихованными координатами, и базис движущейся в направлении оси 0x со скоростью V инерциальной системы отсчёта K’ с штрихованными координатами. Теперь выпишем преобразования Лоренца от одних координат к другим:

Преобразования дают возможность заключить, что обе системы отсчёта эквивалентны. Действительно, если выразить штрихованные координаты через не штрихованные, то получим те же самые преобразования:

с заменой знака «плюс» перед V на «минус» — по отношению к штрихованной системе не штрихов энная движется в противоположном направлении.

Одно из достоинств геометрической интерпретации пространства Минковского состоит в том, что лоренц-инвариантность выражается в инвариантности относительно лоренцевых вращений. В частности, значение интервала, записанного выше, не изменяется после поворота базиса, хотя теперь выражается через новые (штрихованные) координаты нового базиса. Чтобы убедиться в этом нужно лоренцевы преобразования (А) подставить в выражение для квадрата интервала, записанного выше. В результате получим:

то есть s = s'.

В инвариантности интервала нет ничего удивительного — это лишь геометрическое свойство пространства Минковского, а не следствие каких‑то принципов. Действительно, поскольку интервал — это длина в метрическом пространстве, то эта величина не зависит от способов измерения (использования той или иной координатной сетки). Замечательно другое — известные геометрические свойства псевдоевклидовых пространств оказались весьма полезными для описания СТО.

Эффекты сокращения длины, замедления времени, сложение скоростей в СТО являются следствием лоренц-инвариантности. Остановимся на первых двух. Рассмотрим линейку, собственная длина которой l>0 — это длина в её системе покоя. Пусть система покоя для выбранной линейка — это система K' , которая движется относительно нас (системы К) со скоростью V. Тогда, если кон

>Рис. 5.3. Переход к другой инерциальной системе на диаграмме пространства Минковского