Гравитация. От хрустальных сфер до кротовых нор | страница 48



>Рис. 5.3. Переход к другой инерциальной системе на диаграмме пространства Минковского

цы линейки имеют координаты x>1' и x>2', то l>0= x>2' - x>1'. Определим длину этого отрезка с точки зрения наблюдателя системы K. Для этого нужно в один и тот же (!) момент времени t определить координаты концов линейки x>2и x>1в системе К. Тогда для нас длина линейки буде иметь величину l = x>2x>1. Чтобы определить каждое из значений x>2 и x>1 через соответствующие штрихованные координаты используем первую часть преобразований Лоренца (Б) каждый раз с одним и тем же значением t. Затем составим разницу и получим l = l>0sqrt(1–V>2/c>2), то есть для нас (покоящейся системы K) движущаяся линейка становится короче.

Подтвердим вывод о замедлении времени. Находясь в системе К будем отслеживать ход часов в системе К' которые находятся в точке х'. Для нас часы в системе К идут одинаково во всех точках, поэтому часы системы K' можно сравнивать с любыми нашими. Не теряя общности, можно предположить, что х' = 0 и моменты первого сравнения в обеих системах также нулевые: t>1' = t>1= 0.

Вопрос в том, как начнут разниться показания в любой следующий момент сравнения t>2 (а для системы K' — t>2'). Теперь удобнее использовать вторую часть преобразований Лоренца (А). Получаем t>2 = t>2'/sqrt(1–V>2/c>2). Как видно, показания часов в нашей системе К будут больше, чем в К', хотя в обоих случаях отсчёт начинался с нуля. Таким образом, движущиеся часы идут медленнее.

На этом этапе важно сделать замечание. Мы все больше убеждаемся, что пространство и время физически объединены в единое целое — пространственно–временной континуум. Действительно, и пространственные, и временные координаты участвуют в единых преобразованиях; инвариантная величина интервал построена как из временных промежутков, так и из пространственных отрезков. Несмотря на это, и пространство, и время сохраняют свою физическую сущность — протяжённость и длительность. Формально это различие состоит в том, что временная часть входит в интервал со знаком «плюс», а пространственная — со знаком «минус».

Мы уже отметили, что квадраты интервалов могут быть положительными, нулевыми и даже отрицательными. Для положительных — временная часть превосходит пространственную, и они называются времениподобными. Нулевые соответствуют распространению света и называются светоподобными; совокупность светоподобных, представляющая распространение световых лучей из какой‑либо мировой точки, образует, так называемый,