Вертолёт, 2005 № 01 | страница 9
Посмотрим на проблему с другой стороны. Строгость постановки задачи требует, очевидно, такой же строгости в ее решении. Однако математически строгих способов подтверждения вероятности порядка 10'8 …10'9 практически не существует.
Сегодня, как и на заре развития авиации, нарушение прочности конструкции — один из основных факторов возникновения аварийных и катастрофических ситуаций. Между тем в действующих нормах прочности самолетов и вертолетов даются только детерминистические способы регламентирования и расчетов. Так, методика расчета безопасного ресурса предусматривает использование нескольких коэффициентов надежности. Эти коэффициенты учитывают разброс параметров законов распределения нагрузок и прочности конструкции и определяются эмпирически с использованием вероятностно-статистических методов обработки результатов испытаний. По технико-экономическим ограничениям испытаниям на выносливость подвергаются не более чем несколько сотен стандартных образцов и несколько образцов реальной конструкции. Полученные значения вероятностей при этом лежат в диапазоне значений 10-1 … 10'3. Теоретически распространить полученные данные на значения вероятностей порядка 10'8 …10'9 возможно только при условии принятия ряда допущений. Такого рода допущения могут быть достаточно правдоподобны, но строгого доказательства их истинности не существует. В то же время надежность методики расчета безопасного ресурса подтверждается опытом: при всех расследованиях причин катастроф не было случая, когда бы эта методика ставилась под сомнение. Причины катастрофических разрушений конструкции достаточно банальны — брак в производстве, некачественный ремонт, неполный учет эксплуатационных нагрузок. По сути — это проявления того же «человеческого» фактора, который является основной причиной приведших к тяжелым последствиям нарушений правил эксплуатации.
Отход АП-29 от количественных требований в части отказобезопасности в определенной мере обусловлен и спецификой винтокрылого аппарата, особенностями его летных свойств и конструкции. Способность вертолета лететь на малой скорости и висеть, садиться на режиме авторотации при отказе двигателей устраняет характерную для самолета фатальную неизбежность катастрофы при целом ряде функциональных отказов. Пока вертолет сохраняет целостность силовых деталей, способны вращаться и управляемы несущий и рулевой винты, а при полетах в отсутствие видимости сохранена индикация пространственного положения — возможны безопасная посадка и благополучное завершение полета. Поэтому сердцевина проблемы безопасности полета вертолета — это специфичные вертолетные детали: втулки несущих винтов, автоматы перекоса, лонжероны лопастей, постоянно видоизменяющиеся и по виду, и по применяемым материалом, и по используемым технологиям производства.