Дилогия атеизма | страница 19
Вопрос о надежности аксиоматики возникает и вне связи с опытом. Если в ней можно одновременно вывести и какое-то утверждение, и его отрицание, то такая противоречивая система явно бесполезна: уже доказанное можно сразу же опровергнуть. Если в системе можно построить утверждение, в ее же рамках недоказуемое, но и неопровержимое, то такая – неполная – система лишь ограниченно пригодна: для выяснения судьбы такого утверждения придется вводить в систему новые аксиомы.
Естественно, в числе целей математиков долгое время была проверка непротиворечивости системы аксиом, которой они пользовались. Желательна и полнота системы: не хочется каждый раз натыкаться, подобно Евклиду, на утверждения, с которыми заведомо невозможно справиться.
Доказательство непротиворечивости и полноты математической аксиоматики искали долго, упорно и весьма изобретательно. Но в 1931-м немецкий математик Курт Гёдель доказал две теоремы, радикально отличные от всех предшествовавших представлений об основаниях математики как логической структуры.
По первой теореме, любая теория, достаточно обширная, чтобы включать арифметику, либо неполна, либо противоречива. По второй теореме, если теория, включающая арифметику, непротиворечива, то ее средствами это недоказуемо.
Арифметика здесь весьма важна. И не только по техническим причинам: Гёдель построил конкретные примеры недоказуемых и неопровержимых утверждений, пользуясь именно арифметическими инструментами. Куда важнее содержательная сторона дела – связь с реальностью. Так, формальная логика не подчиняется теоремам Гёделя. Любое утверждение, сформулированное в ее рамках, можно ее же средствами однозначно доказать или столь же однозначно опровергнуть. В частности, утверждение об ее непротиворечивости строго доказано самой же логикой. Зато и средства логики столь бедны, что даже арифметические действия этими средствами невозможно определить – а значит, для описания реального мира формальная логика недостаточна.
Неполная наука
Наука, занимающаяся реальным миром, в целом неизмеримо богаче не только формальной логики, но и арифметики, и математики вообще. Значит, по Гёделю, она заведомо неполна. Впрочем, наука на полноту и не претендует.
К концу XIX века известный физик Филипп Жолли сказал одному из своих учеников, что занятия физикой бесперспективны: все основные законы уже постигнуты, так что будущим поколениям осталась лишь техническая возня с их приложением к конкретным обстоятельствам. Учеником – по иронии судьбы – был Макс Планк, вскоре доказавший квантовую природу излучения, с чего началась новая, продолжающаяся и по сей день физическая революция.