Дилогия атеизма | страница 18
Выбирать надо
Религия не всегда и не во всем дает ложные указания. Если бы нечто подобное и впрямь происходило, нам было бы куда проще жить. Пророку Мухаммеду приписывается совет: мужчина, выслушай совет женщины – и сделай наоборот. Замени в этой фразе женщину на веру – и пользуйся религией, как компасом, где в привычный синий цвет окрашен конец стрелки, нацеленный на юг, а не на север.
На деле все куда сложнее. Среди христианских есть церкви, ориентирующиеся на точную астрономию, а есть и те, что пользуются астрономией существенно устаревшей. То есть даже ориентация на религиозный канон не освобождает по меньшей мере от одного выбора: какой канон?
Вот тут нас подстерегает неожиданная сложность в сфере, вроде бы очень отдаленной от веры, – в математике.
Теоремы Гёделя
Всякое рассуждение опирается на исходные предположения. Их в свою очередь требуется обосновать, и цепочка обоснований не может быть бесконечной. На каком-то этапе приходится выбрать исходные положения, принимаемые без доказательств.
Идея опоры на недоказанные предположения впервые отчетливо сформулирована древними греками. Поэтому их до сих пор во всем мире называют греческим словом “аксиома” – ценная, достойная. А следствия, логически выводимые из них, зовутся опять же греческим словом “теорема” — сказанная богом.
Выбор системы аксиом непрост. Если какие-то теоремы, выведенные из них, явно противоречат опыту, то приходится решать: то ли аксиомы неверны, то ли опыт интерпретирован неточно. Правда, можно развивать аксиоматику без проверки опытом – в надежде на то, что в какой-то новой сфере знаний для нее найдется приложение: так обычно действует чистая математика. Но опыт зачастую указывает нетривиальные направления работы – так развивается прикладная математика – и поэтому желательно сверяться с ним почаще.
Вдобавок какие-то аксиомы взаимозаменяемы: если выбрать одну из них, то другую можно доказать на ее основе. И надо решать, какой набор аксиом удобнее для доказывания. Евклид, в чьих трудах идея аксиоматики впервые проведена достаточно строго, одну из своих аксиом – постулат о параллельных прямых – сформулировал подчеркнуто неуклюже: похоже, он подозревал, что ее на самом деле можно доказать, и такой формулировкой нацелил на нее позднейших исследований. Правда, дело оказалось еще интереснее: как выяснилось уже в XIX веке, это действительно аксиома, и отказ от нее порождает другие геометрии, причем в рамках евклидовой аксиоматики можно построить модели этих геометрий – а значит, все они равно надежны.