Юный техник, 2009 № 08 | страница 12
Но каким образом во Вселенной образуются органические молекулы? Расстояния между небесными телами огромны, и в первом приближении космос представляет собой пустое пространство. Лишь в отдельных его участках наблюдается некоторое увеличение плотности материи. Например, в газопылевых облаках, из которых рождаются звезды. Молекулы газа в таких «населенных пунктах» расположены достаточно близко для того, чтобы сталкиваться друг с другом. Кроме того, молекулы могут оседать на частицах пыли и реагировать в «спокойной обстановке».
Компьютерное изображение этилформиата (вверху) и n-пропилцианида (внизу).
Впервые мысль о возможности образования органических соединений при столкновении космических частиц, двигающихся с очень высокими скоростями, была высказана несколько лет назад российскими учеными, работавшими под руководством Георгия Манагадзе из Института космических исследований РАН.
Прежде всего, таким путем в космическом пространстве образуются простейшие молекулы, например, метанол или формальдегид. Для синтеза сложных веществ необходим более изощренный технологический процесс.
Компьютерные модели показывают, что небольшие молекулы выступают в качестве строительных блоков для создания более крупных соединений. По мнению ученых, этилформиат и n-пропилцианид образовались именно таким путем.
Итак, получается, что в космическом пространстве вполне могут образоваться пахучие вещества. Но вот «унюхать» непосредственно этот запах ни человек, ни иное земное существо в безвоздушном пространстве не смогут. Да и распробовать Вселенную на вкус тоже никому не удастся.
СУМАСШЕДШИЕ МЫСЛИ
Вселенная из одного электрона?
Помните: чтобы быть верной, идея должна быть совсем уж сумасшедшей? Видимо, этой мыслью и руководствовался известный американский теоретик Ричард Фейнман, разрабатывая вот какую теорию…
В начале XX века английский теоретик Джеймс Максвелл составил систему уравнений, позволившую описать поведение электромагнитного излучения. При этом неожиданно выяснилась одна деталь. Решение максвелловых уравнений для света дает не один, а два ответа. Один из них описывает «запаздывающую» волну, которая представляет собой обычное движение света из одной точки в другую. А вот второй — некую «опережающую» волну, которая, по идее, физически представляет собой луч света, уходящий назад во времени.
В течение сотни лет «опережающее» решение попросту отбрасывалось как не имеющее практической ценности, в то время как «нормальное» решение достаточно точно предсказывало поведение радиоволн всех диапазонов. А вот физикам-теоретикам опережающая волна все эти годы не дает спокойно спать. Уравнения Максвелла — один из столпов современной науки, поэтому к любому их решению следует отнестись очень серьезно, рассуждали ученые.