Синергетика. Основы методологии | страница 26
Наблюдатель системы приобрёл значительную новую информацию не только о настоящем, но и о будущем системы. Здесь, как и ранее для случая с двумя исходами интуитивно появляется понятие информации как результата отождествления системы, которая до свершения события могла с некоторой вероятностью оказаться в одном из возможных состояний с некоторым конкретным состоянием.
Нашему рассмотрению может быть дана и другая математическая интерпретация. Пусть мы имеем фазовое пространство взаимодействующих структур, имеющее n аттракторов — зон притяжения; существует некоторая точка (или область), отделяющая друг от друга бассейны притяжения этих аттракторов. Перед событием фазовое состояние системы взаимодействующих структур попадает в указанную точку или область, выйдя из которой в процессе события оно попадает в бассейн притяжения того или иного аттрактора, откуда ей уже не вернуться назад.
В классической теории вероятностей вместо вектора/) вводится некоторая функция на множестве возможных исходов бифуркационного (случайного) события.
Рассматривается в элементарном случае конечное множество Ω элементов ω, которые мы будем называть элементарными исходами бифуркационного события и ξ(Ω) множество подмножеств из Ω. Элементы множества φ(Ω) будем называть совокупностями исходов бифуркационного события, а Ω — пространством элементарных исходов бифуркационного события.
Каждому элементу ω из Ω поставлено в соответствие неотрицательное действительное число p>1, — вероятность реализации i-го исхода бифуркационного события. При этом выполняется условие
В этом случае p>1, …, p>n суть вероятности элементарных исходов ω>1, …, ω>n или просто элементарные вероятности.
Каждому множеству A из ξ(Ω) поставлено в соответствие неотрицательное действительное число P(A). Это число называется вероятностью реализации совокупности исходов. Оно определяется как сумма вероятностей элементарных исходов, входящих в A:
где i>k — номера элементарных исходов, входящих в совокупность A>j.
Если P(A) > 0, то частное Р(В\А) = Р(АВ)/Р(А), где AB — пересечение множеств А и В, называется условной вероятностью реализации совокупности исходов В при условии реализации совокупности исходов. Отсюда непосредственно следует, что Р(АВ) = Р(В\А)Р(А).
Заключение по индукции даёт общую формулу Р(А>1А>2…А>n) = Р(А>1)Р(А>2\А>1)P(A>3\A>2\A>1)…Р(А>n\А>1…А>n-1) (теорема умножения).
Отсюда получаем Р(А\B) = Р(А)Р(В\А)/Р(B), и далее формулу полной вероятности Р(В) = P(A