Живая математика. Математические рассказы и головоломки | страница 57



Умея подсчитывать перестановки, мы можем определить теперь, сколько различных расположений шашек[16] возможно в коробке игры в «15». Другими словами, можем подсчитать число всех задач, какие способна предложить нам эта игра. Легко понять, что подсчет сводится к определению числа перестановок из 15 предметов. Мы знаем уже, что для этого нужно перемножить

1 х 2 х 3 х 4 х… и т. д… х 14 х 15.

Вычисление дает итог:

1 307 674 365 000,

т. е. больше триллиона.

Из этого огромного числа задач половина неразрешима. Существует, значит, свыше 600 миллиардов неразрешимых положений в этой игре. Отсюда понятна отчасти та эпидемия увлечения игрой в «15», которая охватила людей, не подозревавших о существовании такого огромного числа неразрешимых случаев.


IV

Заканчивая нашу беседу о числе перестановок, решим такую задачу из школьной жизни.

В классе 25 учеников. Сколькими способами можно рассадить их по партам?

Путь решения этой задачи - для тех, кто усвоил себе все сказанное раньше - весьма несложен: нужно перемножить 25 таких чисел:

1 х 2 х З х 4 х 5 х 6… х 23 х 24 х 25.

Результат получается огромный, из 26 цифр - число, величину которого наше воображение не в силах себе представить. Вот оно:[17]

15 511 210 043 330 985 984 000 000.

Из всех чисел, какие встречались нам до сих пор, это, конечно, самое крупное, и ему больше всех прочих принадлежит право называться «числом-великаном».


61. Перекладывание монет

В детстве старший брат показал мне, помню, занимательную игру с монетами. Поставив рядом три блюдца, он положил в крайнее блюдце стопку из 5 монет: вниз - рублевую, на нее - полтинник, выше - двугривенный, далее - пятиалтынный и на самый верх - гривенник[18].


Рис. 85. Брат показал мне занимательную игру


- Все 5 монет, - заявил он, - нужно перенести на третье блюдце, соблюдая следующие три правила, первое правило: за один раз перекладывать только одну монету. Второе: никогда не класть большей монеты на меньшую. Третье: можно временно класть монеты и на среднее блюдце, соблюдая оба правила, но к концу игры все монеты должны очутиться на третьем блюдце в первоначальном порядке. Правила, как видишь, несложные. А теперь приступай к делу.


Так выглядели монеты, о которых идет речь

Я принялся перекладывать. Положил гривенник на третье блюдце, пятиалтынный на среднее и запнулся. Куда положить двугривенный? Ведь он крупнее и гривенника, и пятиалтынного.

- Ну, что же? - выручил меня брат. - Клади гривенник на среднее блюдце, поверх пятиалтынного. Тогда для двугривенного освободится третье блюдце.