Живая математика. Математические рассказы и головоломки | страница 29
Возможны еще и другие арифметические решения.
36. Нешаблонный путь решения задачи таков. Прежде всего поставим вопрос: как должны машинистки поделить между собою работу, чтобы закончить ее одновременно? (Очевидно, что только при таком условии, т. е. при отсутствии простоя, работа будет выполнена в кратчайший срок.) Так как более опытная машинистка пишет в 1>1/>2 раза быстрее менее опытной, то ясно, что доля первой должна быть в 1>1/>2 раза больше доли второй - тогда обе кончат писать одновременно. Отсюда следует, что первая должна взяться переписывать >3/>5 доклада, вторая - >2/>5.
Собственно, задача уже почти решена. Остается только найти, за сколько времени первая машинистка выполнит свои >3/>5 работы. Всю работу она может сделать, мы знаем, за 2 часа; значит, >3/>5 работы будет выполнено за 2 х >3/>5 = 1>1/>5 часа. За такое же время должна сделать свою долю работы и вторая машинистка.
Итак, кратчайший срок, в какой может быть переписан доклад обеими машинистками, - 1 час 12 мин.
37. Если вы думаете, что шестеренка обернется три раза, то ошибаетесь: она сделает не три, а четыре оборота.
Чтобы наглядно уяснить себе, в чем тут дело, положите перед собою на гладком листе бумаги две одинаковые монеты, например два двугривенных, так, как показано на рис. 36. Придерживая рукой нижнюю монету, катите по ее ободу верхнюю. Вы заметите неожиданную вещь: когда верхняя монета обойдет нижнюю наполовину и окажется внизу, она успеет сделать уже полный оборот вокруг своей оси; это будет видно по положению цифр на монете.
Рис. 36
А обходя неподвижную монету кругом, монета наша успеет обернуться не один, а два раза. Вообще, когда тело, вертясь, движется по кругу, оно делает одним оборотом больше, чем можно насчитать непосредственно. По той же причине и наш земной шар, обходя вокруг Солнца, успевает обернуться вокруг своей оси не 365 с четвертью, а 366 с четвертью раз, если считать обороты не по отношению к Солнцу, а по отношению к звездам. Вы понимаете теперь, почему звездные сутки короче солнечных.
38. Через трижды три года загадчик будет на 9 лет старше, чем теперь. Трижды три года назад он был на 9 лет моложе, чем теперь. Разница лет, следовательно, составляет 9 + 9, т. е. 18 лет. Это и есть возраст загадчика, согласно условию задачи.
Несложно решается задача и в том случае, если, обратившись к услугам алгебры, составить уравнение. Искомое число лет обозначим буквой х. Возраст спустя три года надо тогда обозначить через