Веселые задачи. Две сотни головоломок | страница 60



– 1 должен быть вдвое больше, чем х, т. е. равняться 2 × х. Итак, 12 × х– 1 = 2 × х, откуда следует, что 1 целый оборот равен 10 × х (действительно, 12 × х – 10 × х =  2 × х). Но если 10 × х = целому обороту, то х = 1/10 части оборота. Вот и решение задачи: часовая стрелка отошла от цифры XII на 1/10 полного оборота, на что требуется 12/10 ч, или 1 ч 12 мин. Минутная стрелка при этом будет вдвое дальше от XII, т. е. на расстоянии 1/5 оборота; это соответствует 60/5 = 12 мин – как и должно быть.

Мы нашли одно решение задачи. Но есть и другие: стрелки в течение двенадцати часов располагаются таким же образом не один раз, а несколько. Попытаемся найти остальные решения.

Для этого дождемся двух часов; минутная стрелка стоит у XII, а часовая – у II. Рассуждая, как прежде, получаем равенство

12 х – 2 = 2 × х,

откуда 2 целых оборота равны 10 × х и, значит, х = 1/5 целого оборота. Часы будут показывать при этом 12/5 = 2 ч 24 мин.

Дальнейшие моменты читатель легко вычислит сам и найдет, что стрелки располагаются согласно требованию задачи в следующие 10 моментов:

в 1 ч 12 мин в 7 ч 12 мин

в 2 ч 24 мин в 8 ч 24 мин

в 3 ч 36 мин в 9 ч 36 мин

в 4 ч 48 мин в 10 ч 48 мин

в 6 ч в 12 ч

Ответы: «в 6 часов» и «в 12 часов» могут показаться неверными, – но только с первого взгляда. Действительно, в 6 часов часовая стрелка стоит у VI, минутная – у XII, т. е. ровно вдвое дальше от начальной отметки XII (успев описать один оборот). В 12 же часов часовая стрелка удалена от XII на нуль, а минутная, если хотите, на «два нуля» (потому что двойной нуль – то же, что и нуль); значит, и этот случай, в сущности, удовлетворяет условию задачи.

144. После сделанных разъяснений решить эту задачу нетрудно. Рассуждая, как прежде, легко сообразить, что в первый раз требуемое расположение стрелок будет в тот момент, который определяется равенством

откуда 1 = 111/2 × х, или х = 1/23 целого оборота,т. е. стрелки будут расположены требуемым образом через 11/23 ч после XII, т. е. в 1 ч 214/23 мин минутная стрелка должна стоять посредине между XII и 11/23 часами, т. е. на 12/23 часа, что как раз и составляет 1/23 полного оборота (часовая стрелка к этому моменту пройдет 1/23 полного оборота). Второй раз стрелки расположатся требуемым образом в момент, который определится из равенства

откуда 2 = 111 /2 x и x = 4/23; искомый момент – 2 ч 5 5/23 мин. Третий искомый момент – 3 ч 719/23 мин и т. д.

145. Эта задача решается так же, как и предыдущая. Вообразим, что обе стрелки стояли у XII, и затем часовая отошла от XII на некоторую часть полного оборота, которую мы обозначим буквой