Квантовая магия | страница 34
Примерно то же самое происходит со спином. Результаты расчетов показывают, что если система находится в состоянии типа , то в этом случае оказывается несправедливым наше интуитивное предположение о том, что спин до измерения существует как реальная и объективная физическая характеристика частицы. В квантовой теории делается и более общий вывод: если система исходно находилась в нелокальном суперпозиционном состоянии, то ее составные части, как локальные классические объекты, не существуют до тех пор, пока не произойдет декогеренция.
Здесь только нужно учитывать, что у сложной макроскопической системы обычно очень много степеней свободы, и по одним из степеней она может быть локальна, сепарабельна (разделима на независимые части), а по другим — несепарабельна, неразделима на части. Это легко пояснить на примере частиц, которые могут находиться в разных местах, то есть будут разделены по пространственным координатам, но в то же время по спиновым степеням свободы составлять единое целое.
Своим примером с Эйнштейн пытался доказать, что квантовая механика неполна и не способна однозначно описать реальность в принципе. Отсюда возникло предположение о скрытых параметрах, которые в состоянии и помогут вернуться к привычному, локальному описанию объектов. Однако конечный результат исследования этой проблемы оказался противоположным.
В итоге выяснилось, что более правильным является именно подход. И результат такого подхода несовместим с предположением, что наблюдаемые свойства объекта (в общем случае) существуют до наблюдения как объективная самостоятельная внутренняя характеристика.
Первый реальный шаг к такому выводу сделал Бе64 году, когда он, анализируя ситуацию со скрытыми параметрами, сформулировал свои знаменитые неравенства[29].
Он ввел понятие «объективной локальной теории», которой придерживались Эйнштейн и сторонники скрытых параметров. В этой теории предполагается, что
● физические свойства системы существуют сами по себе, они объективны и не зависят от измерения;
● измерение одной системы не влияет на результат измерения другой системы;
● поведение не взаимодействующей с окружением системы зависит лишь от условий в более ранние моменты времени.
Это привычные для всех нас представления об окружающей реальности.
Теорема Белла утверждает, что «объективная локальная теория» и квантовая механика дают разные предсказания для результатов измерения. Естественно, возник вопрос, каким же на самом деле является реальный мир, и неравенства Белла помогли ответить на него непосредственно — на основании анализа результатов экспериментов. Такие эксперименты были проведены А. Аспектом