Математика в занимательных рассказах | страница 64
3 (x + 5) = 4 (x — 3).
Решив его, находим x = 27. Следовательно, стульев было 27, а учеников 3 × (27 + 5) = 96.
4) Обозначим расстояние между домами через х. Молодой человек всего прошел 2х, а доктор вчетверо меньше, т. е. >x/>2—. До встречи доктор прошел половину пройденного им пути, т. е. >x/>4, а молодой человек — остальное, т. е. >3x/>4. Свою часть пути доктор прошел в >x/>12 часов, а молодой человек — в >3x/>16 часов, причем мы знаем, что он был в пути на >3/>4 часа дольше, чем доктор. Имеем уравнение:
откуда × = 2,4 километра. Итак, от дома молодого человека до дома доктора — 2,4 километра.
5) Налив 300 граммов воды в чашку весов, отвешиваем этой «водяной гирей» сначала 300 граммов чаю. Затем, положив на одну чашку весов эти 300 граммов чаю, кладем на другую — пряжку, т. е. 650 граммов, и досыпаем на менее нагруженную чашу в отдельный пакет столько чаю, чтобы весы пришли в равновесие, — т. е. 350 г. Отвесив еще с помощью пряжки 650 г чаю, имеем 650 г + 350 г = 1000 г, т. е. 1 килограмм.
6) Обозначим себестоимость одного арбуза через х. Тогда чистая прибыль от продажи одного арбуза первой партии равна 36 — х, второй 32 — х, третьей 27 — х, наконец, последнего арбуза 48 — х. Так как чистая прибыль от продажи каждой партии одинакова, то число арбузов в первой партии должно равняться
Все эти выражения, согласно условию задачи, суть целые числа. Надо, следовательно, подобрать для × такое значение, при котором выражения
превращаются в целые числа. Нетрудно найти, путем нескольких испытаний, что этому условию удовлетворяет только × = 24. Тогда первое выражение равно 2, второе — 3, третье — 8. Другими словами, в первой партии было 2 арбуза, во второй 3, в третьей 8. Всего же арбузов было привезено торговцем 2 + 3 + 8 + 1 = 14.
7) Способ второй ученицы удобнее, так как при умножении 1 года 1 мес. 1 >1/>4 дней на 4 — мы сразу освобождаемся от дроби, и тогда умножение на 9 выполняется легче. Способ первой ученицы таких удобств не дает, он более громоздкий. Поэтому учительница должна была дать второму решению более высокую оценку.
Хитрое разрешение мудреной задачи
В. Г. Бенедиктов[39]
Одна баба, торговавшая яйцами, имея у себя к продаже девять десятков яиц, отправила на рынок трех дочерей своих и, вверив старшей и самой смышленой из них десяток, поручила другой 3 десятка, а третьей полсотни. При этом она сказала им:
— Условьтесь наперед между собой насчет цены, по которой вы продавать будете, и от этого условия не отступайтесь; все вы крепко держитесь одной и той же цены; но я надеюсь, что старшая дочь моя, по своей смышлености, даже и при общем между вами условии, по какой цене продавать, сумеет выручить столько за свой десяток, сколько вторая выручит за 3 десятка, да научит вторую сестру выручить за ее 3 десятка столько же, сколько младшая выручит за полсотни. Пусть выручки всех троих да цены будут одинаковы. Притом я желала бы, чтоб вы продали все яйца так, чтобы пришлось круглым счетом не меньше 10 копеек за десяток, а за все 9 десятков — не меньше 90 копеек, или 30-ти алтын.