Квантово-мистическая картина мира. Структура реальности и путь человека | страница 42



Г.В. Лейбниц

Не так уж и давно, в средние века, в университетах Европы программа обучения состояла из двух основных частей — тривиума и квадриума. В программу тривиума входили грамматика, риторика, диалектика, а в программу квадриума — арифметика, геометрия, астрономия и музыка. После окончания тривиума выпускники получали звание бакалавра искусств, после квадриума — степень магистра искусств.

Вершиной осваиваемой в университете премудрости считалось деление многозначных чисел — то, что сейчас проходят, если не ошибаюсь, в третьем классе.

Говорит ли это о том, что человечество стало способнее и умнее? Нет! Просто получили распространение более простые методы счёта.

Сейчас мы пользуемся арабскими цифрами[71], а в средние века в Европе применялись римские, с их сложным и далеко не последовательным представлением чисел. Использование десятичной системы исчисления, реализованное в арабских цифрах, и сделало доступным большинству людей то, что прежде было доступно единицам.

Настоящий физик ценит простоту и красоту описания никак не меньше, чем точность. Помните, в школе мы проходили первый закон Ньютона: «Всякое тело продолжает удерживаться в своем состоянии покоя или…»? Так вот, смысл этого закона не только в том, что тела сохраняют состояние своего движения при отсутствии действующих на них сил.

Наиболее глубокий смысл этого закона в том, что существуют системы отсчета, в которых законы природы выглядят проще. Если мы сядем на качели и раскачаемся, траектория полета камня покажется нам весьма замысловатой. Если же мы будем стоять на месте, понять закономерности движения камня будет значительно легче.

Поиск методов, позволяющих упростить описание мира, всегда занимал центральное место в физике.

Каждый из нас видит, как Солнце и звёзды вращаются вокруг Земли. И может показаться, что описание движения светил с позиций неподвижного наблюдателя на Земле легче всего. Однако стоит присмотреться внимательнее, как оказывается, что планеты совершают какие-то непонятные возвратные движения на фоне звезд, и для их описания приходится вводить понятие эпициклов[72], в ходе которых планеты совершают собственное круговое движение вокруг некоторой точки, движущейся по орбите вокруг Земли. Описание становится сложным и запутанным. Для ясного и простого описания законов движения планет солнечной системы мы должны перейти в гелиоцентрическую систему отсчета, в которой Земля обращается вокруг Солнца наряду с остальными планетами. В то же время, эта модель нам совершенно не нужна, когда мы едем из Питера в Москву.