Квантово-мистическая картина мира. Структура реальности и путь человека | страница 10



Может быть, всё это не так, и дело только в том, что пролетный детектор слишком сильно искажает движение электронов? Проведя дополнительные опыты с различными детекторами, по-разному искажающими движение электронов, мы заключаем, что роль этого эффекта не очень существенна. Существенным оказывается только сам факт фиксации состояния объекта!

Таким образом, если измерение, проведенное над классической системой, может и не оказать никакого влияния на ее состояние, для квантовой системы это не так: измерение разрушает чисто квантовое состояние, переводя суперпозицию в смесь.

Сделаем математическое резюме полученных результатов. В квантовой теории вектор состояния принято обозначать символом | >. Если какой-то набор данных, определяющих систему, обозначить буквой x, то вектор состояния будет иметь вид |x>.

В описанном эксперименте при открытой первой щели вектор состояния обозначается как |1>, при открытой второй щели — как |2>, при двух открытых щелях вектор состояния будет содержать две компоненты,

|x> = a|1> + b|2>, (1)

где a и b — комплексные числа, называемые амплитудами вероятности. Они удовлетворяют условию нормировки |a|>2 + |b|>2 = 1.

В случае, если поставлен пролетный детектор, квантовая система перестает быть замкнутой, поскольку с ней взаимодействует внешняя система — детектор. Происходит переход суперпозиции в смесь, и теперь вероятности прохождения электронов через каждую из щелей даются формулами P>1 = |a|>2, P>2 = |b|>2, P>1 + P>2 = 1. Интерференция отсутствует, мы имеем дело со смешанным состоянием.

Если же событие может произойти несколькими взаимоисключающими с классической точки зрения способами, то амплитуда вероятности события — это сумма амплитуд вероятности каждого отдельного канала, а вероятность события определяется формулой P = |(a|1> + b|2>)|>2. Возникает интерференция, то есть взаимное влияние на результирующую вероятность обеих компонент вектора состояния. В этом случае говорят, что мы имеем дело с суперпозицией состояний.

Отметим, что суперпозиция — это не смесь двух классических состояний (немного одного, немного другого), это нелокальное состояние, в котором электрона, как локального элемента классической реальности, нет. Лишь в ходе декогеренции[11], вызванной взаимодействием с окружением (в нашем случае — экраном), электрон возникает в виде локального классического объекта.

Теперь — короткий экскурс в историю подобных опытов. Впервые интерференцию света на двух щелях наблюдал английский ученый Томас Юнг в начале XIX века. Затем, в 1926–1927 годах К. Д. Дэвиссоном и Л. X. Джермером в экспериментах с использованием монокристалла никеля была открыта дифракция электронов — явление, когда при прохождении электронами через множество «щелей», образованных плоскостями кристалла, наблюдаются периодические пики в их интенсивности. Природа этих пиков совершенно аналогична природе пиков в двухщелевом эксперименте, а их пространственное расположение и интенсивность позволяют получить точные данные о структуре кристалла. Этим ученым, а также Д. П. Томсону, который независимо от них также открыл дифракцию электронов, в 1937 году была присуждена Нобелевская премия.