Живой кристалл | страница 23
Рассуждая о нулевых колебаниях, физики часто пользуются величиной так называемого параметра де Бура. Им определяется отношение амплитуды нулевых колебаний к межатомному расстоянию:
Для подавляющего большинства веществ параметр де Бура мал, значительно меньше единицы. Существуют, однако, и такие, для которых он близок к единице и даже превосходит ее. К примеру, у изотопов гелия, атомы которых очень легки (≈ 5 • 10>-24 г), оказывается Λ ≈ 3!
Когда параметр де Бура существенно превосходит единицу, это означает, что вещество ни при какой температуре не может существовать в кристаллической фазе, если искусственно (приложением внешнего давления) не уменьшить амплитуду нулевых колебаний и таким образом уменьшить Λ до значений порядка единицы и менее. Таким веществом, как известно, является гелий, который в обычных условиях остается жидким при сколь угодно низких температурах. Закристаллизовать его можно, лишь приложив давление. Небольшое, около 25 атмосфер. Естественно, может возникнуть вопрос, почему этим свойством не обладает водород, который, как известно, легче гелия. Дело в том, что параметр де Бура определяется не только массой атомов, но и энергией взаимодействия между ними. В случае водорода эта энергия больше, чем в случае гелия, и в этом причина того, что водород отвердевает, а гелий нет!
Мой рассказ об одном из непременных признаков жизни кристалла — о нулевых колебаниях — с самого начала основан на доверии читателя.
Доверием я не злоупотребил. Нулевые колебания себя обнаруживают во многих физических явлениях, главным образом в так называемых «квантовых кристаллах», у которых амплитуда нулевых колебаний велика, параметр Λ достигает значений, превосходящих единицу. Это — кристаллы, для которых характерна малая энергия связи, и существуют они в области низких температур (ожиженные и закристаллизованные идеальные газы и др.). Благодаря активным нулевым колебаниям, эти кристаллы обладают аномальными механическими свойствами. А недавно физики обнаружили, что в кристаллах изотопов гелия вблизи 0 К происходит так называемая «квантовая диффузия», при которой коэффициент диффузии растет с понижением температуры. Удивительно? Удивительно, но факт!