Живой кристалл | страница 15
Определим теперь период колебаний атома. Если иметь в виду лишь приближенную оценку, то сделать это совсем несложно. Когда вся тепловая энергия колеблющегося атома преобразована в его кинетическую энергию, атом движется с максимальной скоростью, которая следует из условия
Мы сделали грубое предположение, сочтя, что на протяжении всего периода колебаний атом движется с максимальной скоростью. Как выясняется, оно привело нас к потере численного множителя 2π. Точная формула выглядит так:
Мы получили результат, противоречащий интуиции: кажется странным, что период колебаний атома в решетке практически не зависит от температуры, разве что лишь в меру очень слабой температурной зависимости модуля упругости. Здесь следует подчеркнуть: не при всех температурах, а лишь при высоких температурах, когда вообще справедливо все то, что рассказано в очерке. Так как масса атома
m ≈ 10>-22 грамм, то τ>0 = 10>-13 - 10>-12 с
Итак, мы оценили две фундаментальные характеристики движения атома в кристалле: амплитуду и период колебаний. Их значения свидетельствуют об очень активной жизнедеятельности атома: он за секунду, не меняя положения оседлости, совершает п = 1/τ>0 = 10>12 — 10>13 колебаний, проходя при этом путь протяженностью L = па = (10>12 — 10>13)• 10>-9 см = 10>3 — 10>4 см!
История закона Дюлонга и Пти — отличная иллюстрация к одной из общих закономерностей развития науки: в ее ткань входят не только завершенные «глыбы» правды, но и те «крупицы» знаний, которые оказываются лишь долей правды.
ТЕОРИИ ЭЙНШТЕЙНА И ДЕБАЯ
Открытие Дюлонга и Пти оказалось первым этапом почти вековой истории выяснения природы теплоемкости кристалла. Два последующих этапа связаны с именами великих физиков XX века — Альберта Эйнштейна и Петера Дебая. Их достижения относятся к теории. Экспериментальным же изучением теплоемкости в XX веке занимались в великом множестве лабораторий.
Модель маятников, зарекомендовавшую себя при объяснении закона Дюлонга и Пти, Эйнштейн не отверг, предположение об их независимости сохранил, число маятников оставил тем же: 3N. В модель он внес, однако, принципиально важное уточнение: маятники не «классические», а «квантовые». Это значит вот что: в отличие от «классических», они могут менять свою энергию лишь определенными порциями, «квантами». Классическая закономерность «чем — тем», передающая непрерывность связи между величинами, в данном случае несостоятельна.
Кстати, о закономерности «чем — тем», которую мы назвали «классической». Речь идет о том, что различные величины, характеризующие свойства вещества и зависящие одна от другой, в классической, в смысле «не квантовой», физике связаны так, что любое сколь угодно малое изменение одной из величин влечет за собой малое изменение другой величины. Нет скачков, нет ступенек, а есть непрерывное изменение: «чем — тем».