Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 94



или РАС) в зависимости от изменения величины лага.

Судя по табл. 6.3, уровень автокорреляции (АС) между исходными уровнями временного ряда US Dollar 1 постоянно убывает, начиная с первого лага. В свою очередь уровень частной корреляции (РАС) резко снижается уже после первого лага, а после второго лага осциллирующим образом стремится к нулю (фактически колеблется вокруг нуля). Если мы хотим построить модель авторегрессионного процесса AR(p), то для определения оптимального числа р мы должны использовать частную автокорреляционную функцию. При этом следует исходить из следующего критерия: оптимальное число р в уравнении авторегрессии должно быть меньше лага, в котором частная автокорреляционная функция начинает стремиться к нулю. Судя по коррелограмме, помещенной в табл. 6.3, коэффициент частной автокорреляции для лага в один месяц (или лага 1-го порядка) равен 0,967, а для лага в два месяца (или лага 2-го порядка) = 0,005. Причем начиная с этого лага величина коэффициента колеблется вокруг нулевого уровня. Следовательно, можно сделать вывод, что для прогнозирования курса доллара с помощью модели авторегрессии необходимо использовать модель AR(1), которая примет следующий вид:

Y>t =c + b>1Y>t-1 +e>t. (6.1)

В свою очередь при идентификации авторегрессионной модели со скользящей средней модели ARMA(p, q) в качестве р выбирается лаг, после которого начинает убывать частная автокорреляционная функция, а в качестве q выбирается лаг, после которого начинает убывать автокорреляционная функция. Исходя из табл. 6.3 можно легко прийти к выводу, что коэффициент автокорреляции начинает убывать уже с лага 2-го порядка. Аналогичный вывод можно сделать и относительно коэффициента частной автокорреляции. Поэтому для прогнозирования курса доллара с помощью модели авторегрессии со скользящим средним в остатках можно использовать модель ARMA(1, 1), которая примет следующий вид:

Однако попробуем обойтись меньшим числом параметров, а потому сначала будем использовать авторегрессионную модель AR(1) согласно формуле (6.1). После того как в эту формулу вместо Y будет вставлено логарифмированное значение курса USDollar, оно приобретет следующий вид:

log(USDollar) = с + а × log(USDollar(-l)) + е. (6.3)

Однако для ввода в EViews следует использовать эту формулу в понятном для программы виде:

log(USDollar) log(USDollar(-l)) с. (6.4)

При этом целесообразно использовать для создания переменных файл USDollar, т. е. файл с исходным временным рядом (с данными за период с июня 1992 г. по июнь 2010 г.), поскольку в этом случае мы сможем получить в EViews прогноз в исходном, а не в логарифмическом виде (рис. 6.4).