Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 72



Шаг 2. Интерпретация влияния стьюдентизированных остатков на точность прогноза

В результате шага 1 получены диаграмма (она приведена на рис. 5.7) и табл. 5.8. Интерпретация диаграммы довольно проста, поскольку на ней представлен график значений стьюдентизированных остатков, который с обеих сторон выделен пунктирной линией и обозначает область допустимых значений, равных ± 2. Когда стьюдентизированные остатки выходят за пределы этой пунктирной линии, в этом наблюдении их можно считать выбросами. Легко заметить, что особенно велик стьюдентизированный остаток, полученный в сентябре 1998 г.

В таблице 5.8 приведена часть полученных с помощью EViews значений стьюдентизированных остатков (за период с января 1997 г. по сентябрь 1998 г.). При этом стьюдентизированные остатки, которые считаются выбросами (их величина больше или меньше 2), при выводе итогов обозначаются EViews красным шрифтом (в таблице они подчеркнуты). При этом область допустимых значений определяется с помощью уже известной нам t-статистики. В частности, выбросами считаются остатки, которые получены не только в сентябре, но и в августе 1998 г. Если сравнить стандартные остатки из табл. 5.7 со стьюдентизированными остатками, то легко заметить, что значения последних — за счет выросшей дисперсии между наблюдениями — наиболее сильно отличаются от значений первых для августа и сентября 1998 г.

Некоторые математические подробности по расчету стьюдентизированных остатков в EViews

Теоретически все случайные ошибки предполагаются независимыми и имеющими одну и ту же дисперсию σ>2, однако в действительности конкретные остатки отнюдь не независимы и, следовательно, не имеют одинаковых дисперсий. В действительности дисперсия остатков зависит не только от величины σ>2, но и от h>i — i-го диагонального элемента матрицы вида Х>t(Х`Х)>-1Х>t, с которой мы уже познакомились в главе 3.

Стьюдентизированные остатки в EVews рассчитываются по формуле

где е>t — остаток для конкретного наблюдения, полученный по уравнению регрессии, построенному с учетом всех наблюдений временного ряда;

s(i) — стандартное отклонение остатков, полученное по уравнению регрессии, построенному по тому же временному ряду без учета наблюдения i;

h>t — i-ный диагональный элемент матрицы вида Х>t(ХХ)>-1Х>t.

При необходимости i-ный диагональный элемент матрицы Х>t(ХХ)>-1Х>tможно найти для каждого наблюдения, если в диалоговом мини-окне INFLUENCE STATISTICS установить опцию ПАТ MATRIX (т. е. матрица