Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 49



й ряд Y>t можно считать стационарным.

Стандартный тест Дикки — Фуллера проводится после вычитания Y>t->1 из левой и правой частей уравнения (4.4). В результате мы получаем следующую формулу:

Y>t — Y>t>-1 = ρY>t>-1Y>t>-1 + e>t (4.5)

Учитывая, что dY>1 = Y>t- Y>t-l, а ρY>t>-1Y>t>-1 = (ρ -1)Y>t>-1, и приравняв α = (ρ-1), получим новое уравнение:

dY>1 = αY>t>-1 + e>t (4.6)

С учетом того, что при r = 1 параметр а становится равным нулю, то соответственно в случае принятия нулевой гипотезы α = 0, а если принимается альтернативная гипотеза, то соответственно |α| < 1, а следовательно, временной ряд считается стационарным.

Однако на практике большую популярность приобрел расширенный тест Дикки — Фуллера AUGMENTED DICKEY — FULLER, так как он учитывает возможную автокорреляцию в остатках. При этом в правую часть уравнения (4.6) включаются дополнительные лаговые переменные Y. В результате это уравнение приобретает следующий вид:

В дальнейшем эти знания нам потребуются для проверки авторегрессионного процесса 2-го порядка (см. уравнение (4.1)) на стационарность, а пока применим эту теорию для проверки на стационарность остатков, полученных в результате решения этого уравнения. Заполнив в алгоритме № 9 мини-окно UNIT ROOT TEST и щелкнув кнопку ОК, мы фактически решили следующее уравнение регрессии:

В результате решения расширенного теста Дикки — Фуллера мы получили табл. 4.4 с итогами теста, свидетельствующими о стационарности остатков. О том, как мы пришли к этому выводу, подробно рассказано выше (см. алгоритм действий № 9 «Как проверить в EViews остатки на стационарность модели»).

Поскольку мы доказали, что остатки, полученные по модели авторегрессии 2-го порядка без константы, являются стационарными, то, следовательно, можно сделать вывод, что их распределение носит устойчивый характер.

4.3. Описательная статистика и тестирование остатков на нормальное распределение

Теперь нашей задачей является ответить на следующий важный вопрос: является ли распределение полученных остатков нормальным? При составлении интервальных прогнозов мы исходим из предположения, что распределение остатков носит нормальный характер, поэтому теперь должны проверить, насколько это утверждение соответствует истине.

Алгоритм действий № 10
Как в EViews получить описательную статистику остатков
Шаг 1. Установка необходимых опций

Чтобы узнать характер распределения остатков, необходимо в рабочем файле открыть файл RESID, а затем выбрать опции VIEW (CMOTpeTb)ZDESCRIPTIVE STATISTICS (описательная статистика)/ STATS TABLE (таблица со статистикой). В результате мы получили табл. 4.5 с описательной статистикой для остатков.