Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 19



2.2. Коэффициенты регрессии и свободный член уравнения при переходе от столбцов НИЖНИЕ и ВЕРХНИЕ (при заданном уровне надежности) не должны менять свой знак. Если смена знака происходит, то коэффициенты регрессии и свободный член уравнения признаются статистически незначимыми.

Исходя из этого краткого алгоритма мы отметили жирным шрифтом в ВЫВОДЕ ИТОГОВ (табл. 2.5) именно те пункты, на которые следует обратить внимание. При этом те пункты, которые не являются статистически значимыми при определенном уровне надежности, мы не только выделили жирным шрифтом, но еще и подчеркнули.

Таким образом, взяв за основу данные из табл. 2.5 и действуя по алгоритму № 4, мы дадим ответы на все его четыре пункта.

1.1. Поскольку коэффициент детерминации R>2 для этого уравнения регрессии оказался равен 0,71511, то отсюда можно сделать вывод, что это уравнение в 71,51 % случаях в состоянии объяснить ежемесячные колебания курса доллара.

1.2. Значимость F равна 5,4Е -60 или нулю, а следовательно, уравнение регрессии статистически значимо как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

2.1. Р-значение для свободного члена уравнения равно 0,023323, а следовательно, этот коэффициент статистически значим лишь при 95 %-ном уровне надежности, но незначим при 99 %-ном уровне надежности, поскольку он больше 0,01. Р-значение для коэффициента регрессии равно нулю, а следовательно, этот коэффициент статистически значим как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

2.2. Свободный член (константа) уравнения при переходе от столбца НИЖНИЕ 99,0 % к столбцу ВЕРХНИЕ 99,0 % меняет знак с минуса на плюс, а потому статистически незначим при 99 %-ном уровне надежности. При 95 %-ном уровне надежности смены знаков не происходит, а потому свободный член уравнения при этом уровне надежности статистически значим. Коэффициент регрессии статистически значим как при 95 %, так и при 99 %-ном уровне надежности, поскольку и в том, и в другом случае смены знака у этого коэффициента не происходит. Следовательно, на основании табл. 2.5 можно сделать вывод, что в целом уравнение регрессии и все его коэффициенты статистически значимы при 95 %-ном уровне надежности.

Как мы уже говорили ранее, уравнение регрессии в отличие от обычных уравнений, оценивающих функциональную, т. е. жестко детерминированную связь между переменными, дает прогноз зависимой переменной с учетом воздействия случайного фактора, поэтому фактические значения результативного признака практически всегда отличаются от его расчетных (теоретических) значений. При этом случайная компонента (остаток) находится следующим образом.