Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 105
Почему же стационарная модель log(USDollar) = с + а × log(USDollar(-l)) + МА(1) не позволяет построить прогнозы с оптимальной шириной интервальных прогнозов при переходе к исходному временному ряду? В главе 1 (см. 1.2) мы уже научились распознавать стационарность временного ряда с помощью построения его графика. Попробуем построить аналогичный график для логарифмических остатков (за период с июля 1992 г. по июнь 2010 г.), полученных в результате решения уравнения регрессии по стационарной модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1). В результате получится диаграмма, изображенная на рис. 6.12.
Исходя из рис. 6.12 можно сделать следующие выводы: во-первых, большая часть логарифмических остатков, полученных по стационарной модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1), колеблется примерно в одном диапазоне вокруг нулевого уровня; во-вторых, с течением времени волатильность логарифмических остатков постепенно снижается; в-третьих, на графике видны три значительных всплеска волатильности остатков, однако последний всплеск по сравнению с предыдущими явно незначительный. Отсюда можно сделать вывод, что логарифмические остатки стационарной (точнее сказать, слабо стационарной) статистической модели асимптотически стремятся к относительно узкому диапазону колебаний, т. е. становятся все более стационарными, однако на начальном этапе временного ряда эти колебания еще довольно велики.
Таким образом, чтобы получить оптимальную ширину интервальных прогнозов для стационарной модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1), необходимо убрать из базы данных часть временного ряда с наиболее волатильными остатками. Для отсечения наиболее волатильной части остатков будем использовать тест Чоу на точность прогноза. Исходя из рис. 6.12 и с учетом данных табл. 5.4 «Рейтинг наблюдений по величине скачка курса доллара», которые показывают максимальный рост волатильности после дефолта августа 1998 г., проведем тест на точность прогноза относительно сентября 1998 г. В результате получим табл. 6.20, согласно которой нельзя сделать однозначный вывод о наличии структурного изменения. Дело в том, что уровень значимости (Probability) F-критерия получился больше 0,05, что свидетельствует в пользу нулевой гипотезы об отсутствии структурных изменений. Однако уровень значимости LR-статистики равен 0,001354, что существенно меньше 0,05 и однозначно говорит о наличии структурного изменения. В этой ситуации более надежна LR-статистика, поскольку