Похищенное письмо | страница 10



– «амбицию», а «religio»[9] – «религию».

– Я предвижу, что вам не избежать ссоры с некоторыми парижскими алгебраистами, – сказал я. – Однако продолжайте.

– Я оспариваю универсальность, а тем самым и ценность любой логики, которая культивируется в какой-либо иной форме, кроме абстрактной. И в частности, я оспариваю логику, выводимую из изучения математики. Математика – это наука о форме и количестве, и математическая логика – это всего лишь логика, прилагаемая к наблюдениям над формой и количеством. Предположение, будто истины даже того, что зовется «чистой» алгеброй, являются абстрактными или всеобщими истинами, представляет собой великую ошибку. И эта ошибка настолько груба, что мне остается только изумляться тому единодушию, с каким ее никто не замечает. Математические аксиомы – это отнюдь не аксиомы всеобщей истины. То, что справедливо для взаимоотношений формы и количества. часто оказывается вопиюще ложным в применении, например, к морали. В этой последней положение, что сумма частей равна целому, чаще всего оказывается неверным. Эта аксиома не подходит и для химии. При рассмотрении мотивов она также оказывается неверной, ибо два мотива, из которых каждый имеет какое-то значение, соединившись, вовсе не обязательно будут иметь значение, равное сумме их значений, взятых в отдельности. Существует еще много математических истин, которые остаются истинами только в пределах взаимоотношений формы и количества. Однако математик, рассуждая, по привычке исходит из своих частных мыслей так, словно они обладают абсолютно универсальным характером – какими их, бесспорно, привык считать свет. Брайант в своей весьма ученой «Мифологии» упоминает аналогичный источник ошибок, когда он говорит: «Хотя мы не верим в языческие басни, однако мы постоянно забываемся и делаем из них выводы, как из чего-то действительно существующего». Тем не менее алгебраисты, сами язычники, неколебимо верят в «языческие басни» и выводят из них заключения не столько по причине провалов памяти, сколько благодаря непостижимому затмению мыслей. Короче говоря, мне еще не доводилось встречать математика, которому можно было бы доверять в чем-либо, кроме равенства корней, и который втайне не лелеял бы кредо, будто x2+px всегда абсолютно и безусловно равняется q. Если хотите, то попробуйте в качестве опыта сказать кому-нибудь из этих господ, что, по вашему мнению, бывают случаи, когда x2+px не вполне равняется q, но, втолковав ему, что вы имеете в виду, поторопитесь отойти от него подальше, иначе он, без всякого сомнения, набросится на вас с кулаками.