Вселенная. Руководство по эксплуатации, или Как выжить среди черных дыр, парадоксов времени и квантовой неопределенности | страница 72



Разумеется, иногда эта аналогия оказывается довольно-таки натянутой. Например, при игре в мини-гольф можно всегда заменить красный мяч синим, и ничего ужасного не произойдет. На игровые качества мяча цвет, повторим, не влияет. Но что будет, если мы заменим красный мяч футбольным? С точки зрения игры в гольф такая подмена будет «плохой симметрией», поскольку один мяч влезает в лунку, а другой — нет. Однако если бы вы не играли в гольф, а хотели проверить, ровный ли у вас в гостиной пол, то мяч для гольфа и футбольный мяч послужили бы этой цели с одинаковым успехом.

Более того, у электронов есть еще одно качество — так называемая фаза, которую вообще невозможно измерить. Измерить можно только разницу в фазах между двумя электронами1 . Два электрона с разными фазами в некоторых отношениях — одна и та же частица, а в некоторых — разные.

Да уж, с этими электронами одна морока.

В 1940 годах Ричард Фейнман из Калифорнийского технологического института придумал совершенно новый подход ко всему этому. Он спросил, что бы произошло, если бы существовало поле, способное менять фазу электрона (или любой другой заряженной частицы) на другую фазу. Пробившись сквозь математические дебри, он обнаружил, что это и есть электромагнитное поле. Такое странное предположение - что электроны с одной фазой можно превратить в электроны с другой — стало основой

1 Фаза— это что-то вроде кадровой синхронизации на старом телевизоре. Картинку все равно можно различить, даже если она чуть повернута.

для того, чтобы предсказать все, что касается света. Если бы Фейнман проделал те же вычисления на сорок лет раньше, то предсказал бы фотоны до того, как Эйнштейн доказал, что они существуют.

Мы полностью согласны, что такой подход, получивший название «квантовая электродинамика», представляется абсолютно надуманным. У нас нет ни малейших представлений о том, почему Вселенная решила обзавестись физическими законами, построенными так, чтобы для них были справедливы аргументы, основанные на симметрии. Но это факт — аргументы справедливы.

Именно в этом случае физики и вспоминают о своей старинной подружке — симметрии. Может быть, если этот подход годится для одной из фундаментальных сил, он сгодится и для остальных? На первый взгляд электроны и нейтрино не слишком похожи друг на друга. Во-первых, электроны заряжены отрицательно, а нейтрино электрически нейтральны. С точки зрения электромагнетизма они вообще очень разные. Хотя обе частицы крайне легки, нейтрино настолько малы, что физики долгое время считали, будто у них вообще нет массы.