Вселенная. Руководство по эксплуатации, или Как выжить среди черных дыр, парадоксов времени и квантовой неопределенности | страница 71



. Почему же слабое взаимодействие настолько слабо, почему для того, чтобы хоть как-то проявиться, ему нужны дистанции субатомных размеров? Ответ мы уже знаем. Бозоны массивны, как гимнастические мячи, и им очень трудно перемещаться на дальние дистанции. Вероятно, вы не видите в этом ничего необычного, однако даже по самым простым теориям слабое взаимодействие, как и электромагнетизм и все прочие силы, должно иметь частицу-переносчик, лишенную массы. Почему же эти частицы совсем другие?

В физическом мире быть непохожим на других — сомнительное достоинство. Физики любят симметрию. Это настоящая любовь. Они посылают симметрии нежные записочки на лекциях и встречают ее после занятий с цветами. В целом физики понимают под симметрией вот что: можно менять параметры системы, но физика, которая стоит за ней, не меняется при этом ни капельки.

Представьте себе, что вы поехали за город поиграть в мини-гольф с племянником и племянницей и, в соответствии с традиционными тендерными представлениями, даете племяннику синий мяч, а племяннице — красный. Когда вы начинаете раунд, неважно, у кого синий мяч, а у кого красный, поскольку на игровые качества мяча цвет никак не влияет:

А теперь представьте себе, что на полпути к лунке вы отвлекли детей вкуснейшим мороженым и тайком поменяли местами синий и красный мячики. Если вы признаетесь детям, что поменяли мячики, ничего страшного не случится. Они вернутся к игре на том месте, где остановились, просто теперь племянник будет бить по красному мячу, а племянница — по синему. Конечно, подменить только один мячик и сделать так, чтобы на ноле оказалось два красных, нельзя: тогда дети не будут знать, по какому мячику бить, и вы испортите им чудесный день.

Давайте обратимся к более научным материям, нежели мячики и клюшки. Дейтерий — это вариант водорода, ядро которого состоит на протона и нейтрона. Если бы вы попытались заменить один из нейтронов протоном или наоборот, у вас бы получился феномен вроде лохнесского чудовища или снежного человека: очень занятный, но несуществующий. Физики так ценят симметрию, поскольку с фундаментальной точки зрения любые два электрона — или любые две элементарные частицы одного и того же типа — в точности одинаковы, неразличимы. На микроскопическом уровне нельзя сказать "тот электрон» и "этот электрон*. Мы просто отмечаем, что их два.

Так, но не совсем. У электронов есть еще одно свойство — спин, — как мы заметили, когда обсуждали в предыдущей главе ЭПР-парадокс. Спин электрона может быть направлен вверх или вниз. В чем разница? Во многих случаях разницы никакой. Например, электрон со спином, направленным вверх, имеет ту же массу и заряд, что и электрон, чей спин направлен вниз. С другой стороны, если мы пропустим электрон со спином, направленным вниз, через магнитное поле, он отразится не в том направлении, что электрон, чей спин направлен вверх. Более того, при помощи магнитного поля можно превратить электрон со спином, направленным вниз, в электрон со спином, направленным вниз, и наоборот. Тут-то в игру и вступает симметрия. Физики отмечают, что две частицы совершенно одинаковы, кроме одного относительно небольшого различия. Мы думаем о них как о двух версиях одной и той же частицы.