Кибернетика, или Управление и связь в животном и машине | страница 94
Имеется, однако, одно очевидное ограничение, которое мы должны устранить из этого наброска теории временных рядов, а именно необходимость знать ξ(t, γ), и временной ряд, который мы разлагаем в виде (3.46). Вопрос ставится так: при каких условиях временной ряд с известными статистическими параметрами можно представить как ряд, определяемый броуновым движением, или по крайней мере как предел (в том или ином смысле) временных рядов, определяемых броуновым движением? Мы ограничимся временными рядами, [c.142] обладающими свойством метрической транзитивности и даже следующим более сильным свойством: если брать интервалы времени фиксированной длины, но отдаленные друг от друга, то распределения любых функционалов от отрезков временного ряда в этих интервалах приближаются к независимости по мере того, как интервалы отдаляются друг от друга[144]. Соответствующая теория уже излагалась автором.
Если K(t) — достаточно непрерывная функция, то можно показать, что нули величины
по теореме М. Каца, почти всегда имеют определенную плотность и что эта плотность при подходящем выборе К может быть сделана сколь угодно большой. Пусть выбрано такое К>D, что плотность равна D. Последовательность нулей величины
от —∞ до ∞ обозначим через Z>n(D, γ), —∞<n<∞. Конечно, при нумерации этих нулей индекс n определяется лишь с точностью до аддитивной целочисленной константы.
Пусть теперь T(t, μ) — произвольный временной ряд от непрерывной переменной t, а μ — параметр распределения временных рядов, изменяющийся равномерно в интервале (0, 1). Пусть далее
где Z>n — нуль, непосредственно предшествующий моменту t. Можно показать, что, каково бы почти ни было μ, для любого конечного множества значений