Лекции по физике 1 | страница 62
§ 6. Большие расстояния
Вернемся теперь к вопросу о расстоянии. Как далеко отстоят от нас окружающие предметы и как велики они? Всем известно, что для измерения расстояния нужно взять какую-то единицу длины и считать, сколько этих единиц укладывается на данном отрезке. Но как измерить те предметы, которые меньше единицы длины? Как подразделить выбранную единицу длины? А точно так же, как и время: мы берем меньшую единицу длины и считаем, сколько таких единиц укладывается в большей. Таким методом мы сможем измерять все меньшие и меньшие длины.
Однако под расстоянием мы понимаем не только то, что можно измерить метром. Как, например, измерить метром расстояние между вершинами двух гор? Здесь на помощь приходит уже другой метод измерения расстояний — триангуляция. Хотя это означает использование другого определения понятия «расстояние», но в тех случаях, когда есть возможность применить оба метода, они дают одинаковый результат. Пространство все же более или менее соответствует представлениям Евклида, поэтому оба определения эквивалентны. Ну, а раз они согласуются на Земле, то мы более уверены в законности применения триангуляции и для больших расстояний. Этим методом была измерена, например, высота первого спутника (фиг. 5.4).
Фиг. 5.4. Определение высоты искусственного спутника методом триангуляции.
Она оказалась равной приблизительно 5·10>5м. При большей тщательности измерений тем же самым методом определялось расстояние до Луны. Направления двух телескопов в различных точках Земли дают два необходимых угла. Оказалось, что Луна удалена от нас на расстояние 4·10>8м. Однако для Солнца таких измерений провести нельзя, по крайней мере до сих пор никому не удавалось. Дело в том, что точность, с которой можно сфокусировать телескоп на данную точку Солнца и с которой можно измерить углы, не достаточна для вычисления расстояния до Солнца. Как же все-таки определить его? Необходимо как-то расширить принцип триангуляции. Астрономические наблюдения позволяют измерить относительное расстояние между планетами и Солнцем и определить их относительное расположение. Таким образом, мы получаем план солнечной системы в неизвестном масштабе. Чтобы определить масштаб, требуется только абсолютное расстояние, которое было найдено многими различными способами. Один из способов, считавшийся до самого последнего времени наиболее точным, заключается в определении расстояния от Земли до Эроса — малой планеты, которая по временам проходит недалеко от Земли. С помощью триангуляции можно определить расстояние до этого небольшого объекта и получить необходимый масштаб. Зная относительные расстояния, можно определить, например, все абсолютные расстояния от Земли до Солнца или до планеты Плутон.