Лекции по физике 4a | страница 53
Попутно заметим, что мажорный лад можно просто определить условием, что каждый из трех мажорных аккордов (фа— ля—до), (до—ми—соль) и (соль—си-бемоль—ре) представляет последовательность тонов с отношением частот (4:5:6). Эти отношения и тот факт, что в октаве (до—до', соль—соль' и т. д.) частоты относятся как 1:2, определяют в «идеальном» случае весь строй, который называется «натуральным, или пифагорийским строем». Но обычно клавишные инструменты типа фортепьяно не настраиваются таким образом, а устраивается небольшая «подтасовка», так что для всех возможных начальных тонов отношение частот только приблизительно верно. При таком строе, названном «темперированным», октава (для которой отношение частот по-прежнему равно 1:2) делится на 12 равных интервалов, так что отношение частот для каждого интервала равно (2)>1>/>1>2. Для квинты отношение частот будет уже не >3/>2, а (2)>7/>12=1,499, но для большинства людей оно достаточно близко к 3/2.
Итак, мы установили правила благозвучия через совпадение гармоник. Может быть, это совпадение и является причиной благозвучия? Кто-то утверждал, что два абсолютно чистых тона, т. е. тщательно очищенных от высших гармоник, не дают ощущения благозвучия или неблагозвучия (диссонанса), когда их частоты равны или приблизительно равны ожидаемому отношению. (Это очень сложный эксперимент, поскольку приготовить чистые тоны очень трудно по причинам, которые мы увидим дальше.) Мы не можем с уверенностью сказать, сравнивает ли ухо гармоники или занимается арифметикой, когда мы решаем, что звук нам нравится.
§ 4. Коэффициенты Фурье
Вернемся теперь к утверждению о том, что каждую ноту, т. е. любое периодическое колебание, можно представить в виде надлежащей комбинации гармоник. Хотелось бы знать, как можно найти нужную долю каждой гармоники. Конечно, если нам даны все коэффициенты а и b, то, пользуясь формулой (50.2), легко подсчитать функцию f(t). Теперь же вопрос состоит в том, как можно найти коэффициенты при различных гармониках, если нам задана функция f(t)? (Нетрудно испечь пирог, если есть рецепт, но как, отведав пирог, написать его рецепт?)
Фурье открыл, что на самом деле сделать это не очень трудно. Член а>0уж наверняка нетрудно найти. Мы говорили, что он равен среднему значению