Лекции по физике 4a | страница 36



суще­ствуя независимо одно от другого, медленно сдвигаются по фазе одно относительно другого. Это означает, что после до­статочно большого промежутка времени, такого, что в первом движении произойдет, скажем, 900,5 колебания, а во втором — только 900, относительная фаза станет как раз обратной по отношению к тому, что было вначале. Иначе говоря, маятник, имевший вначале большую амплитуду, остановится, тогда как маятник, неподвижный вначале, начнет качаться изо всех сил!

Итак, мы видим, что такое сложное движение можно рас­сматривать в рамках идеи резонансов, когда энергия от одного маятника переходит к другому, или как суперпозицию двух движений с постоянной амплитудой и различными частотами.

* В Советском Союзе изображение имеет 625 строк и ширина ка­налов несколько больше.— Прим ред.


* Следует сделать здесь небольшое примечание: в каких случаях кривая может быть представлена в виде суммы множества косинусов? Ответ: Почти всегда, за исключением небольшого числа случаев, которые могут присниться разве только математику. В каждой точке кривая, разумеется, должна иметь только одно значение и она не должна быть безумной кривой, прыгающей до бесконечности на протяжении беско­нечно малого промежутка времени или что-нибудь в этом же духе. Однакоесли отвлечься от этих ограничений, то любая разумная кривая (в част­ности, и та, которая получается при колебании голосовых связок певицы) всегда может быть представлена в виде суммы косинусоидальных волн

 

 

Глава 49

СОБСТВЕННЫЕ КОЛЕБАНИЯ

§ 1. Отражение волн

§ 2. Волны в огра­ниченном пространстве и собственные частоты

§ 3. Двумерные собственные колебания

§ 4. Связанные маятники

§ 5. Линейные системы

§ 1. Отражение волн

В этой главе мы рассмотрим ряд замеча­тельных явлений, возникающих в результате «заключения» волны в некоторую ограничен­ную область. Сначала нам придется устано­вить несколько частных фактов, относящихся, например, к колебанию струны, а затем, обоб­щив эти факты, мы придем, по-видимому, к наиболее далеко идущему принципу математи­ческой физики.

Первый пример волн в ограниченном про­странстве — это волны в пространстве, огра­ниченном с одной стороны. Давайте возьмем простой случай одномерной волны на струне. Можно было бы рассмотреть плоскую звуко­вую волну в пространстве, ограниченном с одной стороны стенкой, или какие-то другие примеры той же природы, но для наших тепе­решних целей вполне достаточно простой струны. Предположим, что один конец струны закреплен, ну, например, вмурован в «абсо­лютно жесткую» стенку. Математически это можно описать, указав, что перемещение струны