Лекции по физике 4a | страница 33
§ 6. Волны в пространстве трех измерений
Мы заканчиваем наше обсуждение волн несколькими общими замечаниями о волновом уравнении. Эти замечания, призванные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претендуют на то, чтобы вы поняли их сразу; они должны скорее показать, как будут выглядеть все эти вещи, когда вы несколько больше познакомитесь с волнами. Мы уже записали уравнение для распространения звука в одном измерении:
здесь с — скорость того, что мы назвали волнами. Если речь идет о звуке, то это скорость звука, если о свете — то это скорость света. Мы показали, что для звуковой волны перемещения частиц должны распространяться с некоторой скоростью. Но избыточное давление, как и избыточная плотность, тоже распространяется с некоторой скоростью. Таким образом, можно ожидать, что и давление будет удовлетворять этому же уравнению.
Так оно и есть на самом деле, однако докажите это самостоятельно. Указание: r>u пропорционально скорости изменения c с расстоянием х. Следовательно, продифференцировав волновое уравнение по х, мы немедленно обнаружим, что дc/дх удовлетворяет тому же самому уравнению. Другими словами, r>u удовлетворяет тому же самому уравнению. Но Р>uпропорционально r>u, поэтому и Р>uудовлетворяет тому же самому уравнению. Таким образом, и давление, и перемещение — все описывается одним и тем же уравнением.
Обычно волновое уравнение для звука записывается через давление, а не через перемещение. Это проще, потому что давление — скаляр и не имеет никакого направления. Но перемещение есть вектор, и поэтому лучше иметь дело с давлением.
Следующий вопрос, который нам предстоит обсудить, относится к волновому уравнению в трехмерном пространстве. Мы знаем, что звуковая волна в одномерном пространстве описывается решением ехр[i(wt-kx)], где w=kc>S. Кроме того, нам известно, что в трех измерениях волна описывается выражением exp[i(wt-k>xx-k>yy-k>zz)], и в этом случае w>2=k>2с>S>2 [сокращенная запись (k>2>x+k>2>y+k>2>z)c>2>S]. Сейчас мы хотим просто угадать вид волнового уравнения в трехмерном пространстве. Естественно, что в случае звука это уравнение можно получить с помощью тех же самых динамических соображений, но уже в трехмерном пространстве. Однако мы не будем сейчас делать этого, а просто напишем ответ: уравнение для давления или перемещения (или чего-то другого) имеет вид
правильность этого уравнения может быть легко проверена подстановкой в него функции exp[i(wt-